Mentors:
- Morgan Roff
- Sayak Paul
- jaeyounkim
This is a summary of my GSoC 2021 project. In this project, I tried to produce text embedding modules trained on underrepresented languages like Arabic and Swahili and publish them on tfhub.dev.
import torch | |
from diffusers import FluxPipeline | |
from torch import nn | |
class ModelOffloaderV2: | |
def __init__(self, model: nn.Module, record_stream: bool = False): | |
# move model to pinned memory. keep a model copy in CPU pinned memory. | |
for p in model.parameters(): | |
p.data = p.data.cpu().pin_memory() |
# Copyright 2022 Google LLC. | |
# SPDX-License-Identifier: Apache-2.0 | |
# Author: Maithra Raghu <[email protected]> | |
def compute_distance_matrix(patch_size, num_patches, length): | |
"""Helper function to compute distance matrix.""" | |
distance_matrix = np.zeros((num_patches, num_patches)) |
# Copyright 2021 Google LLC. | |
# SPDX-License-Identifier: Apache-2.0 | |
import kfp | |
import json | |
import time | |
from google.cloud import bigquery | |
from google.cloud.exceptions import NotFound | |
from kfp.v2.google.client import AIPlatformClient | |
client = bigquery.Client() |
import functools | |
import numpy as np | |
import tensorflow.compat.v1 as tf | |
from tensorflow.python.tpu import tpu_function | |
BATCH_NORM_DECAY = 0.9 | |
BATCH_NORM_EPSILON = 1e-5 |
To be posted in: https://forums.fast.ai/c/fastai-users/fastai-v2/
Title: Proposed workflow to compare & monitor models using WandbCallback
Content:
Hi,
I’ve been working on WandbCallback
for the past few months (with a lot of help from @sgugger) and I'm very excited to show how it works!
def get_classification_report(y_test, y_pred): | |
'''Source: https://stackoverflow.com/questions/39662398/scikit-learn-output-metrics-classification-report-into-csv-tab-delimited-format''' | |
from sklearn import metrics | |
report = metrics.classification_report(y_test, y_pred, output_dict=True) | |
df_classification_report = pd.DataFrame(report).transpose() | |
df_classification_report = df_classification_report.sort_values(by=['f1-score'], ascending=False) | |
return df_classification_report |
First: install the CLI program for your distribution: https://cloud.google.com/sdk/install
Modify accordingly:
export REGION='us-central1'
export ZONE='us-central1-f'
export PROJECT_NAME='proj'