Created
August 11, 2016 16:19
-
-
Save sbarratt/859dff5e89729bc7eaf5b8bb20b31c16 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from tensorflow.examples.tutorials.mnist import input_data | |
import tensorflow as tf | |
import matplotlib.pyplot as plt | |
# Load data | |
mnist = input_data.read_data_sets('MNIST_data', one_hot=True) | |
# Neural Network Initialization | |
x = tf.placeholder(tf.float32, shape=[None, 784]) | |
W_1 = tf.Variable(tf.random_normal([784, 100], stddev=.05)) | |
b_1 = tf.Variable(tf.random_normal([100], stddev=.05)) | |
h_1 = tf.nn.sigmoid(tf.matmul(x, W_1) + b_1) | |
W_2 = tf.Variable(tf.random_normal([100, 10], stddev=.05)) | |
b_2 = tf.Variable(tf.random_normal([10], stddev=.05)) | |
y = tf.nn.softmax(tf.matmul(h_1, W_2) + b_2) | |
y_ = tf.placeholder(tf.float32, shape=[None, 10]) | |
# Output Initialization | |
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1])) | |
train_step = tf.train.GradientDescentOptimizer(0.05).minimize(cross_entropy) | |
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) | |
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) | |
# Training | |
with tf.Session() as sess: | |
sess.run(tf.initialize_all_variables()) | |
train_accs, validation_accs, test_accs = [], [], [] | |
for i in range(100000): | |
batch = mnist.train.next_batch(100) | |
train_step.run(feed_dict={x: batch[0], y_: batch[1]}) | |
if i % 100 == 0: | |
train_acc = accuracy.eval(feed_dict={x: mnist.train.images, y_: mnist.train.labels}) | |
validation_acc = accuracy.eval(feed_dict={x: mnist.validation.images, y_: mnist.validation.labels}) | |
test_acc = accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels}) | |
train_acc.append( train_acc ) | |
validation_acc.append( validation_acc ) | |
test_acc.append( test_acc ) | |
print ("Iteration %s: train accuracy %.3f" % (i, train_acc)) | |
# Save Model | |
saver = tf.train.Saver() | |
save_path = saver.save(sess, "/tmp/model.ckpt") | |
print("Model saved in file: %s" % save_path) | |
# Plot Training Results | |
plt.figure(figsize=(18, 12)) | |
plt.plot(1-np.array(train_acc), label="train") | |
plt.plot(1-np.array(validation_acc), label="validation") | |
plt.plot(1-np.array(test_acc), label="test") | |
plt.xlabel("Fraction Error") | |
plt.ylabel("Number of Batches in Hundreds") | |
plt.ylim([0, 0.15]) | |
plt.legend() | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment