Created
March 25, 2025 08:47
-
-
Save sbesson/5f030b9cb1a05bfd2f90a6c89a19eaef to your computer and use it in GitHub Desktop.
Reads the CSV produced by the memo_reqenerator SQL query and plots the distribution of initialization times
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import matplotlib.pyplot | |
import numpy | |
import pandas | |
colnames=[ | |
'Image', 'Pixels', 'Series', 'Pixel type', | |
'SizeX', 'SizeY', 'SizeZ', 'SizeC', 'SizeT', | |
'Format', 'Time', 'Rank'] | |
df = pandas.read_csv( | |
"image_list_20250404.csv", | |
names=colnames, | |
parse_dates=["Time"], | |
date_format='%M:%S.%f') | |
times = pandas.to_timedelta(df['Time']) / numpy.timedelta64(1, "s") | |
ax = times.hist(bins=20, color='darkorange') | |
ax.set_yscale('log') | |
ax.grid(False) | |
matplotlib.pyplot.xlabel('Initialization time (s)') | |
matplotlib.pyplot.ylabel('Number of filesets') | |
matplotlib.pyplot.show() | |
matplotlib.pyplot.tight_layout() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment