Created
October 20, 2015 19:36
-
-
Save sbos/65ea08d5885660625fd3 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import cgt | |
import cgt.nn as nn | |
import numpy as np | |
from scipy.stats import norm | |
def gaussian_density(x, mu, sigma): | |
return cgt.exp(-cgt.square(x - mu) / 2 / cgt.square(sigma)) \ | |
/ cgt.sqrt(2 * np.pi) / sigma | |
var_mu = nn.parameter(np.array(0.5)) | |
var_log_sigma = nn.parameter(np.array(0.5)) | |
x = cgt.scalar('x') | |
mu = np.array(0.3) | |
sigma = np.array(1.) | |
q_density = gaussian_density(x, var_mu, cgt.exp(var_log_sigma)) | |
KL = cgt.log(q_density) \ | |
- cgt.log(gaussian_density(x, mu, sigma)) | |
params = nn.get_parameters(KL) | |
#this is the parameter causing problems | |
baseline = nn.parameter(np.array(0.)) | |
#note that baseline acts only in computing the gradients, | |
#not the KL itself | |
KL_grad = [cgt.grad(q_density, [p])[0] * (KL - baseline) for p in params] | |
KL = cgt.function(inputs=[x], outputs=[KL] + KL_grad) | |
N = 10000 | |
def eval(N): | |
x = norm(loc=var_mu.op.get_value(), | |
scale=np.exp(var_log_sigma.op.get_value())).rvs(size=N) | |
l = 0. | |
for i in xrange(N): | |
l += KL(x[i])[0] / N | |
return l | |
l = eval(N) | |
print l | |
#this should not affect the result! | |
baseline.op.set_value(np.array(l)) | |
print eval(N) | |
baseline.op.set_value(np.array(0.)) | |
print eval(N) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment