Created
November 1, 2013 11:25
-
-
Save sbos/7264118 to your computer and use it in GitHub Desktop.
Hidden Markov Model in Julia
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module HMM | |
using Distributions | |
import Distributions.rand | |
import Distributions.fit | |
immutable HiddenMarkovModel{TP, K} | |
theta::Vector{TP} | |
A::Matrix{Float64} | |
pi::Vector{Float64} | |
function HiddenMarkovModel(theta, A, pi) | |
assert(length(theta) == K) | |
assert(size(A) == (K, K)) | |
assert(length(pi) == K) | |
tol = 1e-6 | |
assert(sum(pi) - 1.0 < tol, sum(pi)) | |
for k=1:K | |
assert(sum(A[k, :]) - 1.0 < tol, string(k, " ", sum(A[k, :]))) | |
end | |
return new(theta, A, pi) | |
end | |
end | |
function HiddenMarkovModel{TP}(::Type{TP}, K::Int64) | |
pi = rand(K) | |
pi /= sum(pi) | |
theta = [TP() for k=1:K] | |
A = rand(K, K) | |
for k=1:K | |
A[k, :] /= sum(A[k, :]) | |
end | |
return HiddenMarkovModel{TP, K}(theta, A, pi) | |
end | |
function HiddenMarkovModel{TP}(theta::Vector{TP}) | |
K = length(theta) | |
pi = rand(K) | |
pi /= sum(pi) | |
A = rand(K, K) | |
for k=1:K | |
A[k, :] /= sum(A[k, :]) | |
end | |
return HiddenMarkovModel{TP, K}(theta, A, pi) | |
end | |
function rand{TP, K}(hmm::HiddenMarkovModel{TP, K}, len::Int64) | |
z = zeros(Int, len) | |
_pi = prior_distribution(hmm) | |
z[1] = rand(_pi) | |
_A = transition_distributions(hmm) | |
for i=2:len | |
z[i] = rand(_A[z[i-1]]) | |
end | |
x = Array(typeof(rand(hmm.theta[1])), len) | |
for i=1:len | |
x[i] = rand(hmm.theta[z[i]]) | |
end | |
return (x, z) | |
end | |
function transition_distributions{TP, K}(hmm::HiddenMarkovModel{TP, K}) | |
A = Array(Categorical, K) | |
for k=1:K | |
A[k, :] = Categorical(vec(hmm.A[k, :])) | |
end | |
return A | |
end | |
function viterbi{TP, K, TO}(hmm::HiddenMarkovModel{TP, K}, x::Array{TO}) | |
len = length(x) | |
z = zeros(Int64, len) | |
backptr = zeros(Int64, len-1, K) | |
pr = zeros(K) | |
for k=1:K | |
pr[k] = logpdf(hmm.theta[k], x[1]) + log(hmm.pi[k]) | |
end | |
for i=2:len | |
next_pr = zeros(K) | |
for k=1:K | |
maxk, maxp = -1, -Inf | |
for t=1:K | |
prob = pr[t] + log(hmm.A[t, k]) + logpdf(hmm.theta[k], x[i]) | |
if prob > maxp | |
maxk, maxp = t, prob | |
end | |
end | |
backptr[i-1, k] = maxk | |
next_pr[k] = maxp | |
end | |
pr = next_pr | |
end | |
z[len] = indmax(pr) | |
for i=len-1:-1:1 | |
z[i] = backptr[i, z[i+1]] | |
end | |
return z | |
end | |
numstates{TP, K}(::HiddenMarkovModel{TP, K}) = K | |
numstates{TP, K}(::Type{HiddenMarkovModel{TP, K}}) = K | |
partype{TP, K}(::HiddenMarkovModel{TP, K}) = TP | |
partype{TP, K}(::Type{HiddenMarkovModel{TP, K}}) = TP | |
function fit{HMM <: HiddenMarkovModel}(hmm_type::Type{HMM}, x; conv_eps=1e-10, init_params=None, fit_param=fit, print_iteration=true) | |
len = size(x, 1) | |
K = numstates(hmm_type) | |
TP = partype(hmm_type) | |
hmm = if init_params == None | |
HiddenMarkovModel(TP, K) | |
else | |
HiddenMarkovModel(init_params) | |
end | |
old_likelihood = -Inf | |
while true | |
alpha = zeros(len, K) | |
beta = zeros(len, K) | |
c = zeros(len) | |
alpha[1, :] = hmm.pi .* [pdf(hmm.theta[k], slicedim(x, 1, 1))[1] for k=1:K] | |
c[1] = sum(alpha[1, :]) | |
alpha[1, :] /= K | |
for i=2:len | |
for k=1:K | |
alpha[i, k] = pdf(hmm.theta[k], slicedim(x, 1, i))[1] | |
a = 0. | |
for t=1:K | |
a += hmm.A[t, k] * alpha[i-1, t] | |
end | |
alpha[i, k] *= a | |
end | |
c[i] = sum(alpha[i, :]) | |
alpha[i, :] /= c[i] | |
end | |
beta[len, :] = 1. | |
for i=len-1:-1:1 | |
for k=1:K | |
b = 0. | |
for t=1:K | |
b += beta[i+1, t] * pdf(hmm.theta[t], slicedim(x, 1, i+1))[1] * hmm.A[k, t] | |
end | |
beta[i, k] = b / c[i+1] | |
end | |
end | |
likelihood = sum(log(c)) | |
if print_iteration == true; println("EM iteration. log-likelihood=", likelihood); end | |
gamma = alpha .* beta | |
ksi = zeros(len, K, K) | |
for i=2:len | |
for k=1:K | |
for t=1:K | |
ksi[i, t, k] = alpha[i-1, t] * beta[i, k] * pdf(hmm.theta[k], slicedim(x, 1, i))[1] * hmm.A[t, k] / c[i] | |
end | |
end | |
end | |
A = zeros(K, K) | |
for k=1:K | |
for t=1:K | |
for i=2:len | |
A[k, t] += ksi[i-1, k, t] | |
end | |
end | |
A[k, :] /= sum(A[k, :]) | |
end | |
theta = Array(TP, 0) | |
for k=1:K | |
push!(theta, fit_param(TP, x, vec(gamma[:, k]))) | |
end | |
hmm = HiddenMarkovModel{TP, K}(theta, A, vec(gamma[1, :] / sum(gamma[1, :]))) | |
#assert(old_likelihood < likelihood, "likelihood should monotonically increase") | |
if abs(old_likelihood - likelihood) < conv_eps | |
return hmm | |
end | |
old_likelihood = likelihood | |
end | |
end | |
function fit(::Type{Normal}, x::Vector{Float64}, weights::Vector{Float64}) | |
mu = sum(x .* weights) / sum(weights) | |
y = x - mu | |
var = sum((y .^ 2) .* weights) / sum(weights) | |
return Normal(mu, sqrt(var)) | |
end | |
prior_distribution{TP, K}(hmm::HiddenMarkovModel{TP, K}) = Categorical(hmm.pi) | |
export HiddenMarkovModel, transition_distributions, prior_distribution, rand | |
export numstates, partype | |
export viterbi, fit | |
end | |
using HMM | |
using Distributions | |
K = 3 | |
theta = [Normal(k, 0.2) for k=1:K] | |
A = zeros(K, K) | |
for k=1:K | |
A[k, :] = 0.1 | |
A[k, k] = 0.8 | |
A[k, :] /= sum(A[k, :]) | |
end | |
hmm = HiddenMarkovModel{Normal, 3}(theta, A, [0.3, 0.6, 0.1]) | |
#x, z = rand(hmm, 1000) | |
#est_z = viterbi(hmm, x) | |
# | |
#println("Viterbi error:", sum(abs(z - est_z))) | |
# | |
#est_hmm = fit(HiddenMarkovModel{Normal, 3}, x) |
If some people are still wondering after all that time... As far as I understood, this is a monosequence HMM with a univariate Gaussian output process.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
This looks interesting but I am not sure what the code does. Could you please briefly describe what kind of hidden Markov model this code is estimating?