Created
November 26, 2015 13:30
-
-
Save sbos/ca3c3493ab042b0e4b3b to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import theano as th | |
import theano.tensor as T | |
import lasagne | |
import numpy as np | |
from theano.tensor.shared_randomstreams import RandomStreams | |
from lasagne.nonlinearities import tanh | |
import matplotlib.pyplot as plt | |
import sys | |
# change to True and see what happens | |
use_reshape = False | |
th.config.optimizer = 'None' | |
D = 28 * 28 | |
mnist = np.array(np.load('mnist.npz')['X'], dtype=np.float32) | |
np.divide(mnist, mnist.max(), mnist) | |
input_data = T.matrix('X') | |
batch = 1000 | |
H = 5 | |
rec = lasagne.layers.InputLayer((batch, D), input_data) | |
rec = lasagne.layers.DenseLayer(rec, 500, | |
W=lasagne.init.Normal(), nonlinearity=tanh) | |
rec = lasagne.layers.DenseLayer(rec, 2 * H, | |
W=lasagne.init.Normal(), nonlinearity=None) | |
phi = lasagne.layers.get_output(rec) | |
if use_reshape: | |
phi = T.reshape(phi, (2, batch, H)) | |
zmu = T.reshape(phi[0, :, :], (batch, H)) | |
zsigma = T.reshape(T.exp(phi[1, :, :]), (batch, H)) | |
else: | |
zmu = phi[:, :H] | |
zsigma = T.exp(phi[:, H:]) | |
rng = RandomStreams() | |
eps = rng.normal((batch, H)) | |
z = eps * zsigma + zmu | |
gen = lasagne.layers.InputLayer((batch, H), z) | |
gen = lasagne.layers.DenseLayer(gen, 500, | |
W=lasagne.init.Normal(), nonlinearity=tanh) | |
gen = lasagne.layers.DenseLayer(gen, D, | |
W=lasagne.init.Normal(), nonlinearity=lasagne.nonlinearities.sigmoid) | |
obs = T.reshape(lasagne.layers.get_output(gen), (batch, D)) | |
def bernoulli_density(x, p): | |
return T.sum(x * T.log(p) + (1. - x) * T.log(1. - p), axis=1) | |
pmu = T.zeros((batch, H)) | |
psigma = T.ones((batch, H)) | |
def kl(mu1, sigma1, mu2, sigma2): | |
ratio = T.square(sigma1 / sigma2) | |
return 0.5 * T.sum((T.square((mu1 - mu2) / sigma2) + (ratio - 1 - T.log(ratio))), axis=1) | |
lower_bound = T.mean(bernoulli_density(input_data, obs) - kl(zmu, zsigma, pmu, psigma)) | |
params = lasagne.layers.get_all_params(gen, trainable=True) + lasagne.layers.get_all_params(rec, trainable=True) | |
lr = T.scalar() | |
objective = -lower_bound | |
updates = lasagne.updates.adam(objective, params, learning_rate=lr) | |
train_fn = th.function([input_data, lr], [lower_bound, obs[:5, :]], updates=updates, | |
allow_input_downcast=True) | |
avg_lb = 0. | |
lr = 1e-4 | |
for i in xrange(10000): | |
perm = np.random.choice(mnist.shape[0], batch) | |
data = mnist[perm] | |
lb, sample = train_fn(mnist[perm], lr) | |
avg_lb += 0.01 * (lb - avg_lb) | |
sys.stdout.write("\r%f %f %d %f" % (avg_lb, lb, i, lr)) | |
if np.random.rand() < 0.3: | |
x_samples = np.hstack((sample.reshape((28 * 5, 28)), data[:5].reshape(28 * 5, 28))) | |
plt.matshow(x_samples) | |
plt.savefig('samples.png') | |
plt.close() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment