Created
January 23, 2018 08:26
-
-
Save sbugallo/cb70226bed33c0de49b289a8fbd4b667 to your computer and use it in GitHub Desktop.
VGG16 for MRCNN
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from keras.layers import Conv2D | |
from keras.layers import MaxPooling2D | |
""" | |
VGG16 model | |
""" | |
def build_vgg_graph(input_image, stage5=False): | |
""" | |
Model generator | |
:param input_image: model input | |
:param stage5: enables or disables the last stage | |
:return: returns the network stages | |
""" | |
# Stage 1 | |
x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv1')(input_image) | |
x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv2')(x) | |
C1 = x = MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x) | |
# Stage 2 | |
x = Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv1')(x) | |
x = Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv2')(x) | |
C2 = x = MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x) | |
# Stage 3 | |
x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv1')(x) | |
x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv2')(x) | |
x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv3')(x) | |
C3 = x = MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x) | |
# Stage 4 | |
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv1')(x) | |
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv2')(x) | |
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv3')(x) | |
C4 = x = MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x) | |
# Stage 5 | |
if stage5: | |
# Block 5 | |
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv1')(x) | |
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv2')(x) | |
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv3')(x) | |
C5 = MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x) | |
else: | |
C5 = None | |
return [C1, C2, C3, C4, C5] |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment