Created
April 13, 2019 12:18
-
-
Save schaunwheeler/2d9b2328cfc7c5a91a6924c01eaf7e40 to your computer and use it in GitHub Desktop.
Create function in pure Python that calculates predictions from a Scikit-Learn RandomForestRegressor
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from sklearn.tree import _tree | |
tree_template = ''' | |
def tree{i}(inputs): | |
tree_undefined = {tree_undefined} | |
features = {features} | |
thresholds = {thresholds} | |
children_left = {children_left} | |
children_right = {children_right} | |
values = {values} | |
node = 0 | |
while features[node] != tree_undefined: | |
feat = features[node] | |
threshold = thresholds[node] | |
if inputs[feat] <= threshold: | |
node = children_left[node] | |
else: | |
node = children_right[node] | |
output = values[node] | |
return output | |
''' | |
template_footer = ''' | |
def forest(inputs): | |
return ({combined_trees}) / {n} | |
''' | |
template_final = '' | |
n = len(rfr.estimators_) | |
for i, model in enumerate(rfr.estimators_): | |
template_final += tree_template.format( | |
i=i, | |
tree_undefined=_tree.TREE_UNDEFINED, | |
features=repr(model.tree_.feature.tolist()), | |
thresholds=repr(model.tree_.threshold.tolist()), | |
children_left=repr(model.tree_.children_left.tolist()), | |
children_right=repr(model.tree_.children_right.tolist()), | |
values=repr([val[0][0] for val in model.tree_.value]), | |
) | |
template_final += template_footer.format( | |
combined_trees=' + '.join(['tree{i}(inputs)'.format(i=i) for i in range(n)]), | |
n=float(n) | |
) | |
# execute the constructed code to load the function `forest` in the environment | |
exec(template_final) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment