Last active
October 13, 2015 14:07
-
-
Save schaunwheeler/4207354 to your computer and use it in GitHub Desktop.
Shiny code for SegmentViewer Simulation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# The MIT License (MIT) | |
# | |
# Copyright (c) 2012 Schaun Jacob Wheeler | |
# | |
# Permission is hereby granted, free of charge, to any person obtaining a copy | |
# of this software and associated documentation files (the "Software"), to deal | |
# in the Software without restriction, including without limitation the rights | |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
# copies of the Software, and to permit persons to whom the Software is | |
# furnished to do so, subject to the following conditions: | |
# | |
# The above copyright notice and this permission notice shall be included in all | |
# copies or substantial portions of the Software. | |
# | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
# SOFTWARE. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(shiny) | |
library(plyr) | |
library(scales) | |
library(ggplot2) | |
library(reshape2) | |
set.seed(12435) | |
state <- sample(c("CA", "WA", "OR", "AZ", "NV", "UT"), 40000, replace = T) | |
lowgrade <- sample(c(0,1), 40000, replace = T) | |
lowgrade[sample(40000, 10000)] <- sample(c(5,7), 10000, replace = T) | |
lowgrade[sample(40000, 7000)] <- 9 | |
highgrade <- sample(5:6, 40000, replace = T) | |
highgrade[lowgrade == 5] <- sample(c(8,12), sum(lowgrade == 5), replace = T) | |
highgrade[lowgrade == 7] <- 9 | |
highgrade[lowgrade == 9] <- 12 | |
income <- sample(1:10, 40000, replace = T) * 10000 | |
revenue <- c(rnorm(20000, mean = 2000, sd = 2000), | |
rnorm(10000, mean = 2000, sd = 1000), | |
rnorm(10000, mean = 2000, sd = 4000)) | |
revenue[revenue < 0] <- 0 | |
insert_zeros <- sample(1:sum(revenue != 0),sum(revenue != 0)/1.2) | |
revenue[insert_zeros] <- 0 | |
revenue <- sample(revenue, 40000) | |
schools <- data.frame(state, | |
lowgrade, | |
highgrade, | |
income, | |
revenue, | |
stringsAsFactors = F) | |
sch_tab <- ddply(schools, | |
.variables = c("state", "lowgrade", "highgrade", "income"), | |
function(df){ | |
c("n" = nrow(df), | |
"sum" = sum(df$revenue), | |
"mean" = mean(df$revenue)) | |
}) | |
reg_line <- predict(lm(sum~mean, data = sch_tab), | |
newdata = data.frame("mean" = sch_tab$mean)) | |
sch_tab$segment <- rep("More Profitable\nMore Difficult", nrow(sch_tab)) | |
sch_tab$segment2 <- rep("Less Profitable\nMore Difficult", nrow(sch_tab)) | |
sch_tab$segment[sch_tab$sum <= reg_line & | |
sch_tab$mean < median(sch_tab$mean)] <- "Less Profitable\nMore Difficult" | |
sch_tab$segment[sch_tab$sum > reg_line & | |
sch_tab$mean >= median(sch_tab$mean)] <- "More Profitable\nLess Difficult" | |
sch_tab$segment[sch_tab$sum <= reg_line & | |
sch_tab$mean >= median(sch_tab$mean)] <- "Less Profitable\nLess Difficult" | |
sch_tab$segment <- factor(sch_tab$segment, | |
levels = c("More Profitable\nLess Difficult", | |
"More Profitable\nMore Difficult", | |
"Less Profitable\nLess Difficult", | |
"Less Profitable\nMore Difficult")) | |
refs <- data.frame("labels" = c(paste("State:",sort(unique(schools$state))), | |
paste("Low grade:", sort(unique(schools$lowgrade))), | |
paste("High grade:", sort(unique(schools$highgrade))), | |
paste("Income:", dollar(sort(unique(schools$income))))), | |
"variables" = c(rep("state",length(unique(schools$state))), | |
rep("lowgrade", length(unique(schools$lowgrade))), | |
rep("highgrade", length(unique(schools$highgrade))), | |
rep("income", length(unique(schools$income)))), | |
"values" = c(sort(unique(schools$state)), | |
sort(unique(schools$lowgrade)), | |
sort(unique(schools$highgrade)), | |
sort(unique(schools$income))), | |
stringsAsFactors = FALSE) | |
# Define server logic required to plot various microsegments | |
shinyServer(function(input, output) { | |
sch_table <- reactive(function() { | |
df <- sch_tab | |
reward2 <- refs[refs$labels %in% input$reward,] | |
risk2 <- refs[refs$labels %in% input$risk,] | |
df$segment2[(df$state %in% reward2[reward2$variables == "state", "values"] | | |
df$lowgrade %in% reward2[reward2$variables == "lowgrade", "values"] | | |
df$highgrade %in% reward2[reward2$variables == "highgrade", "values"] & | |
df$income %in% reward2[reward2$variables == "income", "values"]) & | |
(df$state %in% risk2[risk2$variables == "state", "values"] | | |
df$lowgrade %in% risk2[risk2$variables == "lowgrade", "values"] | | |
df$highgrade %in% risk2[risk2$variables == "highgrade", "values"] | | |
df$income %in% risk2[risk2$variables == "income", "values"])] <- "More Profitable\nLess Difficult" | |
df$segment2[(df$state %in% reward2[reward2$variables == "state", "values"] | | |
df$lowgrade %in% reward2[reward2$variables == "lowgrade", "values"] | | |
df$highgrade %in% reward2[reward2$variables == "highgrade", "values"] | | |
df$income %in% reward2[reward2$variables == "income", "values"]) & | |
!(df$state %in% risk2[risk2$variables == "state", "values"] | | |
df$lowgrade %in% risk2[risk2$variables == "lowgrade", "values"] | | |
df$highgrade %in% risk2[risk2$variables == "highgrade", "values"] | | |
df$income %in% risk2[risk2$variables == "income", "values"])] <- "More Profitable\nMore Difficult" | |
df$segment2[!(df$state %in% reward2[reward2$variables == "state", "values"] | | |
df$lowgrade %in% reward2[reward2$variables == "lowgrade", "values"] | | |
df$highgrade %in% reward2[reward2$variables == "highgrade", "values"] | | |
df$income %in% reward2[reward2$variables == "income", "values"]) & | |
(df$state %in% risk2[risk2$variables == "state", "values"] | | |
df$lowgrade %in% risk2[risk2$variables == "lowgrade", "values"] | | |
df$highgrade %in% risk2[risk2$variables == "highgrade", "values"] | | |
df$income %in% risk2[risk2$variables == "income", "values"])] <- "Less Profitable\nLess Difficult" | |
df | |
}) | |
output$segplot <- reactivePlot(function() { | |
df <- sch_table() | |
df <- melt(df, id.vars = c("state", "lowgrade", "highgrade", "income", "n", | |
"sum", "mean"), variable.name = "Version", | |
value.name = "Segment") | |
df$Version <- as.character(df$Version) | |
df$Version[df$Version == "segment"] <- "Optimized" | |
df$Version[df$Version == "segment2"] <- "Customized" | |
df$Version <- factor(df$Version, levels = c("Optimized", "Customized")) | |
df$Segment <- factor(df$Segment, | |
levels = c("More Profitable\nLess Difficult", | |
"More Profitable\nMore Difficult", | |
"Less Profitable\nLess Difficult", | |
"Less Profitable\nMore Difficult")) | |
out <- ggplot(df, aes(x = mean, y = sum, color = Segment)) + | |
geom_point(size=2) + | |
scale_color_manual(values = c("blue", "green", "red", "black")) + | |
scale_x_continuous("Avg. Revenue (Ease of Sale)", labels = dollar) + | |
scale_y_continuous("Tot. Revenue (Profitability)", labels = dollar) + | |
facet_grid(Version~.) + | |
ggtitle("Segmentation Comparison:\nStatistically Optimized vs. Individually Customized Solutions") + | |
theme_bw() | |
print(out) | |
}) | |
output$segtable1 <- reactiveTable(function() { | |
df <- sch_table() | |
df$Optimized <- df$segment | |
ddply(df, | |
.variables = "Optimized", | |
function(df){ | |
c("Tot. Revenue" = dollar_format(0)(sum(df$sum)), | |
"Avg. Revenue" = dollar_format(0)(sum(df$mean)), | |
"# Schools" = comma(sum(df$n))) | |
}) | |
}) | |
output$segtable2 <- reactiveTable(function() { | |
df <- sch_table() | |
df$Customized <- df$segment2 | |
ddply(df, | |
.variables = "Customized", | |
function(df){ | |
c("Tot. Revenue" = dollar_format(0)(sum(df$sum)), | |
"Avg. Revenue" = dollar_format(0)(sum(df$mean)), | |
"# Schools" = comma(sum(df$n))) | |
}) | |
}) | |
}) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(shiny) | |
library(scales) | |
state <- c("CA", "WA", "OR", "AZ", "NV", "UT") | |
lowgrade <- c(0, 1, 5, 7, 9) | |
highgrade <- c(5,6,8,9,12) | |
income <- (1:10) * 10000 | |
shinyUI(pageWithSidebar( | |
# Application title | |
headerPanel("Microsegment Explorer"), | |
sidebarPanel( | |
checkboxGroupInput("reward", "Select microsegments you expect to be profitable:", | |
c(paste("State:",sort(unique(state))), | |
paste("Low grade:", sort(unique(lowgrade))), | |
paste("High grade:", sort(unique(highgrade))), | |
paste("Income:", dollar(sort(unique(income)))))), | |
checkboxGroupInput("risk", "Select microsegments you expect to be easy to sell:", | |
c(paste("State:",sort(unique(state))), | |
paste("Low grade:", sort(unique(lowgrade))), | |
paste("High grade:", sort(unique(highgrade))), | |
paste("Income:", dollar(sort(unique(income)))))) | |
), | |
mainPanel( | |
plotOutput("segplot", width = "80%", height = "500px"), | |
tableOutput("segtable1"), | |
tableOutput("segtable2") | |
) | |
)) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment