Created
April 13, 2019 11:44
-
-
Save schaunwheeler/fc91fa09267dc7ecb46d494ba5fc4c94 to your computer and use it in GitHub Desktop.
Example of using spaCy on Spark
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pyspark.sql.types as t | |
import pyspark.sql.functions as f | |
def spacy_word2vec_grouped(cat_list, id_col, string_col): | |
""" | |
Example usage: | |
vec_sdf = ( | |
sdf | |
.select('idColumn', 'documentText') | |
.groupby((f.floor(f.rand() * 20)).alias('groupNumber')) | |
.agg(f.collect_list(f.struct(f.col('idColumn'), f.col('documentText'))).alias('documentGroup')) | |
.repartition('groupNumber') | |
.select(f.explode(spacy_word2vec_grouped_udf(f.col('documentGroup'))).alias('results')) | |
.select(f.col('results.*')) | |
) | |
""" | |
import spacy | |
nlp = spacy.load('en_core_web_lg') | |
output = list() | |
for cat in cat_list: | |
doc = nlp(cat[string_col]) | |
vector = doc.vector.tolist() | |
if sum(vector) != 0.0: | |
output.append((cat[id_col], cat[string_col], vector)) | |
return output | |
spacy_word2vec_grouped_udf = f.udf( | |
spacy_word2vec_grouped, | |
t.ArrayType( | |
t.StructType([ | |
t.StructField('idColumn', t.LongType()), | |
t.StructField('documentText', t.StringType()), | |
t.StructField('documentVector', t.ArrayType(t.DoubleType())) | |
]) | |
) | |
) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment