Created
February 10, 2013 07:38
-
-
Save schwehr/4748800 to your computer and use it in GitHub Desktop.
sklearn python from going through Jake's video
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
X = np.random.random((100, 4)) | |
X.shape | |
from sklearn import datasets | |
data = datasets.load_iris() | |
iris = datasets.load_iris() | |
type(data) | |
x = data.data | |
y = data.target | |
x.shape | |
y.shape | |
x[0] | |
x[:,0] | |
scatter(x[:,0], x[:,1], c=y) | |
set(y) | |
from sklearn.svm import LinearSVC | |
clf = LinearSVC() # clf == classifier | |
clf | |
LinearSVC? | |
clf.fit(x,y) | |
clf.coef_ | |
x_new = np.array([[5.0, 3.6, 1.3, 0.25]]) | |
x_new.shape | |
clf.predict(x_new) | |
iris.target_names | |
# <headingcell level=2> | |
# PCA | |
from sklearn.decomposition import PCA | |
x.shape | |
pca = PCA(n_components=2, whiten=True) | |
pca.fit(x) | |
y = pca.transform(x) | |
y.shape | |
scatter(y[:,0], y[:,1], c=data.target) | |
from sklearn.cluster import KMeans | |
from numpy.random import RandomState | |
rng = RandomState(42) | |
kmeans = KMeans(3, random_state=rng).fit(y) | |
kmeans.labels_ | |
scatter(y[:,0], y[:,1], c=kmeans.labels_) | |
# Take a look at the unsupervised classification | |
!wget https://raw.github.com/scikit-learn/scikit-learn/master/examples/applications/svm_gui.py | |
!python svm_gui.py |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment