Created
August 2, 2011 23:46
-
-
Save sckott/1121532 to your computer and use it in GitHub Desktop.
Example for the mvmeta package
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
> berkey98 | |
trial pubyear npat PD AL var_PD cov_PD_AL var_AL | |
1 Pihlstrom1983 1983 14 0.47 -0.32 0.0075 0.0030 0.0077 | |
2 Lindhe1982 1982 15 0.20 -0.60 0.0057 0.0009 0.0008 | |
3 Knowles1979 1979 78 0.40 -0.12 0.0021 0.0007 0.0014 | |
4 Ramfjord1987 1987 89 0.26 -0.31 0.0029 0.0009 0.0015 | |
5 Becker1988 1988 16 0.56 -0.39 0.0148 0.0072 0.0304 | |
> model <- mvmeta(cbind(PD,AL),S=berkey98[6:8],data=berkey98,lab=list(mlab=trial)) | |
> summary(model) | |
MULTIVARIATE RANDOM-EFFECTS META-ANALYSIS | |
Dimensions: 2 | |
Studies: 5 | |
Estimation method: REML | |
Variance-covariance matrix Psi: unstructured | |
Fixed effects | |
Estimate StdErr z p-value 95%ci.lb 95%ci.ub | |
PD 0.3534 0.0588 6.0057 0.0000 0.2381 0.4688 *** | |
AL -0.3392 0.0879 -3.8589 0.0001 -0.5115 -0.1669 *** | |
Variance components: between-studies stdev and correlation matrix | |
StdDev PD AL | |
PD 0.1083 1.0000 . | |
AL 0.1807 0.6090 1.0000 | |
Multivariate Cochran Q-test for heterogeneity: | |
Q = 128.2267 (df = 8), p-value = <0.0001 | |
10 observations, 2 fixed and 3 random parameters | |
logLik AIC BIC | |
2.0823 5.8353 6.2325 | |
> AIC(model) | |
[1] 5.83534 | |
> blup(model,pi=TRUE,aggregate="y",pi.level=0.90) | |
$PD | |
blup pi.lb pi.ub | |
Pihlstrom1983 0.4175761 0.27265246 0.5624997 | |
Lindhe1982 0.2299012 0.09377627 0.3660262 | |
Knowles1979 0.4024566 0.28408589 0.5208273 | |
Ramfjord1987 0.2864583 0.16258938 0.4103272 | |
Becker1988 0.4307487 0.26821197 0.5932853 | |
$AL | |
blup pi.lb pi.ub | |
Pihlstrom1983 -0.3248929 -0.5192103 -0.13057558 | |
Lindhe1982 -0.5912270 -0.7426969 -0.43975700 | |
Knowles1979 -0.1283270 -0.2849441 0.02829000 | |
Ramfjord1987 -0.3077010 -0.4650393 -0.15036267 | |
Becker1988 -0.3439279 -0.5948634 -0.09299245 | |
> model <- mvmeta(cbind(PD,AL)~pubyear,S=berkey98[6:8],data=berkey98, | |
+ lab=list(mlab=trial),method="ml") | |
> summary(model) | |
MULTIVARIATE RANDOM-EFFECTS META-ANALYSIS | |
Dimensions: 2 | |
Studies: 5 | |
Estimation method: ML | |
Variance-covariance matrix Psi: unstructured | |
Fixed effects | |
PD : | |
Estimate StdErr z p-value 95%ci.lb 95%ci.ub | |
(Int) -1.5822 30.6137 -0.0517 0.9588 -61.5839 58.4195 | |
pubyear 0.0010 0.0154 0.0631 0.9497 -0.0293 0.0312 | |
AL : | |
Estimate StdErr z p-value 95%ci.lb 95%ci.ub | |
(Int) 21.1354 48.2512 0.4380 0.6614 -73.4353 115.7061 | |
pubyear -0.0108 0.0243 -0.4450 0.6563 -0.0585 0.0369 | |
Variance components: between-studies stdev and correlation matrix | |
StdDev PD AL | |
PD 0.0897 1.0000 . | |
AL 0.1582 0.6590 1.0000 | |
Multivariate Cochran Q-test for residual heterogeneity: | |
Q = 125.7557 (df = 6), p-value = <0.0001 | |
10 observations, 4 fixed and 3 random parameters | |
logLik AIC BIC | |
6.0043 1.9914 4.1095 | |
> qtest(model) | |
Multivariate Cochran Q-test for residual heterogeneity: | |
Q = 125.7557 (df = 6), p-value = <0.0001 | |
> newdata <- data.frame(pubyear=1985:1989) | |
> predict(model,newdata,se=TRUE) | |
$pred | |
PD AL | |
[1,] 0.3498409 -0.3567822 | |
[2,] 0.3508143 -0.3676094 | |
[3,] 0.3517876 -0.3784367 | |
[4,] 0.3527610 -0.3892640 | |
[5,] 0.3537343 -0.4000913 | |
$se | |
PD AL | |
[1,] 0.05792492 0.08828305 | |
[2,] 0.06631198 0.10185017 | |
[3,] 0.07691408 0.11889814 | |
[4,] 0.08894261 0.13814422 | |
[5,] 0.10189365 0.15879116 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment