Skip to content

Instantly share code, notes, and snippets.

@scollis
Created December 10, 2022 19:11
Show Gist options
  • Save scollis/5fddbe03dde7199aefe61ac6a29f41a9 to your computer and use it in GitHub Desktop.
Save scollis/5fddbe03dde7199aefe61ac6a29f41a9 to your computer and use it in GitHub Desktop.
quick ingest and plot of HALO LiDAR
import numpy as np
from netCDF4 import Dataset
import os
import datetime
import xarray as xr
import pandas as pd
import matplotlib.dates as mdates
import matplotlib.dates as mdates
from matplotlib import pyplot as plt
from matplotlib.colors import LogNorm
import pyart
'''
Import of StreamLine .hpl (txt) files and save locally in directory. Therefore
the data is converted into matrices with dimension "number of range gates" x "time stamp/rays".
In newer versions of the StreamLine software, the spectral width can be
stored as additional parameter in the .hpl files.
ORIGINAL CODE: https://github.com/marenha/doppler_wind_lidar_toolbox
Adaptation by Max Grover and Scott Collis
'''
def convert_to_preferred_format(secs):
secs = secs % (24 * 3600)
hour = secs // 3600
secs %= 3600
mins = secs // 60
secs %= 60
#print("seconds value in hours:",hour)
#print("seconds value in minutes:",mins)
return "%02d:%02d:%02d" %(hour, mins, secs)
def hpl2dict(file_path):
#import hpl files into intercal storage
with open(file_path, 'r') as text_file:
lines=text_file.readlines()
#write lines into Dictionary
data_temp=dict()
header_n=17 #length of header
data_temp['filename']=lines[0].split()[-1]
data_temp['system_id']=int(lines[1].split()[-1])
data_temp['number_of_gates']=int(lines[2].split()[-1])
data_temp['range_gate_length_m']=float(lines[3].split()[-1])
data_temp['gate_length_pts']=int(lines[4].split()[-1])
data_temp['pulses_per_ray']=int(lines[5].split()[-1])
data_temp['number_of_waypoints_in_file']=int(lines[6].split()[-1])
rays_n=(len(lines)-header_n)/(data_temp['number_of_gates']+1)
'''
number of lines does not match expected format if the number of range gates
was changed in the measuring period of the data file (especially possible for stare data)
'''
if not rays_n.is_integer():
print('Number of lines does not match expected format')
return np.nan
data_temp['no_of_rays_in_file']=int(rays_n)
data_temp['scan_type']=' '.join(lines[7].split()[2:])
data_temp['focus_range']=lines[8].split()[-1]
data_temp['start_time']=pd.to_datetime(' '.join(lines[9].split()[-2:]))
data_temp['resolution']=('%s %s' % (lines[10].split()[-1],'m s-1'))
data_temp['range_gates']=np.arange(0,data_temp['number_of_gates'])
data_temp['center_of_gates']=(data_temp['range_gates']+0.5)*data_temp['range_gate_length_m']
#dimensions of data set
gates_n=data_temp['number_of_gates']
rays_n=data_temp['no_of_rays_in_file']
# item of measurement variables are predefined as symetric numpy arrays filled with NaN values
data_temp['radial_velocity'] = np.full([gates_n,rays_n],np.nan) #m s-1
data_temp['intensity'] = np.full([gates_n,rays_n],np.nan) #SNR+1
data_temp['beta'] = np.full([gates_n,rays_n],np.nan) #m-1 sr-1
data_temp['spectral_width'] = np.full([gates_n,rays_n],np.nan)
data_temp['elevation'] = np.full(rays_n,np.nan) #degrees
data_temp['azimuth'] = np.full(rays_n,np.nan) #degrees
data_temp['decimal_time'] = np.full(rays_n,np.nan) #hours
data_temp['pitch'] = np.full(rays_n,np.nan) #degrees
data_temp['roll'] = np.full(rays_n,np.nan) #degrees
for ri in range(0,rays_n): #loop rays
lines_temp = lines[header_n+(ri*gates_n)+ri+1:header_n+(ri*gates_n)+gates_n+ri+1]
header_temp = np.asarray(lines[header_n+(ri*gates_n)+ri].split(),dtype=float)
data_temp['decimal_time'][ri] = header_temp[0]
data_temp['azimuth'][ri] = header_temp[1]
data_temp['elevation'][ri] = header_temp[2]
data_temp['pitch'][ri] = header_temp[3]
data_temp['roll'][ri] = header_temp[4]
for gi in range(0,gates_n): #loop range gates
line_temp=np.asarray(lines_temp[gi].split(),dtype=float)
data_temp['radial_velocity'][gi,ri] = line_temp[1]
data_temp['intensity'][gi,ri] = line_temp[2]
data_temp['beta'][gi,ri] = line_temp[3]
if line_temp.size>4:
data_temp['spectral_width'][gi,ri] = line_temp[4]
return data_temp
def read_as_netcdf(file):
field_dict = hpl2dict(file)
initial_time = pd.to_datetime(field_dict['start_time'])
time = pd.to_datetime([convert_to_preferred_format(x*60.*60.) for x in field_dict['decimal_time']])
ds = xr.Dataset(coords={'range':field_dict['center_of_gates'],
'time':time},
data_vars={'radial_velocity':(['range', 'time'],
field_dict['radial_velocity']),
'beta': (('range', 'time'),
field_dict['beta']),
'intensity': (('range', 'time'),
field_dict['intensity'])
}
)
return ds
ndir = '/Users/scollis/DL/firstexp/Proc/2022/202212/20221209/'
files = os.listdir(indir)
targets = []
for tf in files:
if 'Stare' in tf:
targets.append(os.path.join(indir,tf))
targets.sort()
datasets = [read_as_netcdf(thisone) for thisone in targets]
mergeddata = xr.concat(datasets, 'time')
myf = plt.figure(figsize=[15,5])
mergeddata.radial_velocity.plot.pcolormesh( cmap=pyart.graph.cm_colorblind.balance, vmin=-4, vmax=4)
plt.ylim([0,6000])
plt.ylabel("Height")
myf = plt.figure(figsize=[15,5])
(mergeddata.intensity-1.0).plot.pcolormesh( cmap=pyart.graph.cm_colorblind.ChaseSpectral, norm=LogNorm(vmin=.0001, vmax=6))
plt.ylim([0,6000])
plt.ylabel("Height")
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment