Last active
July 18, 2018 08:16
-
-
Save scott-fleischman/8ace399d19b30f0875daa443629d6176 to your computer and use it in GitHub Desktop.
Russell's Paradox in Agda — taken from http://www.cs.nott.ac.uk/~psztxa/g53cfr/l20.html/l20.html
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{-# OPTIONS --type-in-type #-} | |
-- Taken from http://www.cs.nott.ac.uk/~psztxa/g53cfr/l20.html/l20.html | |
module _ where | |
open import Agda.Builtin.Unit | |
open import Agda.Builtin.Equality | |
data ⊥ : Set where | |
ex-falso-quodlibet : {A : Set} → ⊥ → A | |
ex-falso-quodlibet () | |
data M : Set where | |
m : (I : Set) → (I → M) → M | |
∅ : M | |
∅ = m ⊥ ex-falso-quodlibet | |
[∅] : M | |
[∅] = m ⊤ (λ _ → ∅) | |
[∅,[∅]] : M | |
[∅,[∅]] = m Two choose | |
where | |
data Two : Set where | |
ff tt : Two | |
choose : Two → M | |
choose ff = ∅ | |
choose tt = [∅] | |
record Pair {A : Set} (B : A → Set) : Set where | |
constructor pair | |
field | |
fst : A | |
snd : B fst | |
_∈_ : M → M → Set | |
a ∈ m I f = Pair (λ x → a ≡ f x) | |
_∉_ : M → M → Set | |
a ∉ b = (a ∈ b) → ⊥ | |
R : M | |
R = m (Pair (λ x → x ∉ x)) Pair.fst | |
in-R-not-in-self : ∀ {X} → X ∈ R → X ∉ X | |
in-R-not-in-self (pair (pair X X∉X) refl) = X∉X | |
not-in-self-in-R : ∀ {X} → X ∉ X → X ∈ R | |
not-in-self-in-R {X} X∉X = pair (pair X X∉X) refl | |
R∉R : R ∉ R | |
R∉R R∈R = in-R-not-in-self R∈R R∈R | |
contradiction : ⊥ | |
contradiction = R∉R (not-in-self-in-R R∉R) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment