Last active
July 23, 2018 12:03
-
-
Save scottire/159420b17cea82ea38a3866bac66fcbf to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import scipy.io as sio | |
import numpy as np | |
import os | |
import gc | |
import six.moves.urllib as urllib | |
import cv2 | |
import time | |
import xml.etree.cElementTree as ET | |
import random | |
import shutil as sh | |
from shutil import copyfile | |
import zipfile | |
import csv | |
def save_csv(csv_path, csv_content): | |
with open(csv_path, 'w') as csvfile: | |
wr = csv.writer(csvfile) | |
for i in range(len(csv_content)): | |
wr.writerow(csv_content[i]) | |
def get_bbox_visualize(base_path, dir): | |
image_path_array = [] | |
for root, dirs, filenames in os.walk(base_path + dir): | |
for f in filenames: | |
if(f.split(".")[1] == "jpg"): | |
img_path = base_path + dir + "/" + f | |
image_path_array.append(img_path) | |
#sort image_path_array to ensure its in the low to high order expected in polygon.mat | |
image_path_array.sort() | |
boxes = sio.loadmat( | |
base_path + dir + "/polygons.mat") | |
# there are 100 of these per folder in the egohands dataset | |
polygons = boxes["polygons"][0] | |
# first = polygons[0] | |
# print(len(first)) | |
pointindex = 0 | |
for first in polygons: | |
index = 0 | |
font = cv2.FONT_HERSHEY_SIMPLEX | |
img_id = image_path_array[pointindex] | |
img = cv2.imread(img_id) | |
img_params = {} | |
img_params["width"] = np.size(img, 1) | |
img_params["height"] = np.size(img, 0) | |
head, tail = os.path.split(img_id) | |
img_params["filename"] = tail | |
img_params["path"] = os.path.abspath(img_id) | |
img_params["type"] = "train" | |
pointindex += 1 | |
boxarray = [] | |
csvholder = [] | |
for pointlist in first: | |
pst = np.empty((0, 2), int) | |
max_x = max_y = min_x = min_y = height = width = 0 | |
findex = 0 | |
for point in pointlist: | |
if(len(point) == 2): | |
x = int(point[0]) | |
y = int(point[1]) | |
if(findex == 0): | |
min_x = x | |
min_y = y | |
findex += 1 | |
max_x = x if (x > max_x) else max_x | |
min_x = x if (x < min_x) else min_x | |
max_y = y if (y > max_y) else max_y | |
min_y = y if (y < min_y) else min_y | |
# print(index, "====", len(point)) | |
appeno = np.array([[x, y]]) | |
pst = np.append(pst, appeno, axis=0) | |
hold = {} | |
hold['minx'] = min_x | |
hold['miny'] = min_y | |
hold['maxx'] = max_x | |
hold['maxy'] = max_y | |
text_file = open("labels/" + tail[:-4] + ".txt", "a") | |
# min_x max_y max_x min_y | |
# left top, right bottom | |
text_file.write("Car 0 0 0 " + str(min_x) + " " + str(min_y) + " " + str(max_x) + " " + str(max_y) + " 0 0 0 0 0 0 0\n" ) | |
text_file.close() | |
print("===== saving txt file for ", tail) | |
# cv2.putText(img, ".", (x, y), font, 0.7, | |
# (255, 255, 255), 2, cv2.LINE_AA) | |
# cv2.polylines(img, [pst], True, (0, 255, 255), 1) | |
# cv2.rectangle(img, (min_x, max_y), | |
# (max_x, min_y), (0, 255, 0), 1) | |
# | |
# cv2.putText(img, "DIR : " + dir + " - " + tail, (20, 50), | |
# cv2.FONT_HERSHEY_SIMPLEX, 0.75, (77, 255, 9), 2) | |
# cv2.imwrite(tail, img) | |
# csv_path = img_id.split(".")[0] | |
def create_directory(dir_path): | |
if not os.path.exists(dir_path): | |
os.makedirs(dir_path) | |
# combine all individual csv files for each image into a single csv file per folder. | |
def generate_label_files(image_dir): | |
header = ['filename', 'width', 'height', | |
'class', 'xmin', 'ymin', 'xmax', 'ymax'] | |
for root, dirs, filenames in os.walk(image_dir): | |
for dir in dirs: | |
csvholder = [] | |
csvholder.append(header) | |
loop_index = 0 | |
for f in os.listdir(image_dir + dir): | |
if(f.split(".")[1] == "csv"): | |
loop_index += 1 | |
#print(loop_index, f) | |
csv_file = open(image_dir + dir + "/" + f, 'r') | |
reader = csv.reader(csv_file) | |
for row in reader: | |
csvholder.append(row) | |
csv_file.close() | |
os.remove(image_dir + dir + "/" + f) | |
save_csv(image_dir + dir + "/" + dir + "_labels.csv", csvholder) | |
print("Saved label csv for ", dir, image_dir + | |
dir + "/" + dir + "_labels.csv") | |
# Split data, copy to train/test folders | |
def split_data_test_eval_train(image_dir): | |
create_directory("images") | |
create_directory("images/train") | |
create_directory("images/val") | |
data_size = 4000 | |
loop_index = 0 | |
data_sampsize = int(0.1 * data_size) | |
test_samp_array = random.sample(range(data_size), k=data_sampsize) | |
for root, dirs, filenames in os.walk(image_dir): | |
for dir in dirs: | |
for f in os.listdir(image_dir + dir): | |
if(f.split(".")[1] == "jpg"): | |
loop_index += 1 | |
print(loop_index, f) | |
if loop_index in test_samp_array: | |
os.rename(image_dir + dir + | |
"/" + f, "images/val/" + f) | |
# os.rename(image_dir + dir + | |
# "/" + f.split(".")[0] + ".csv", "images/val/" + f.split(".")[0] + ".csv") | |
else: | |
os.rename(image_dir + dir + | |
"/" + f, "images/train/" + f) | |
# os.rename(image_dir + dir + | |
# "/" + f.split(".")[0] + ".csv", "images/train/" + f.split(".")[0] + ".csv") | |
print(loop_index, image_dir + f) | |
print("> done scanning director ", dir) | |
os.remove(image_dir + dir + "/polygons.mat") | |
os.rmdir(image_dir + dir) | |
print("Train/test content generation complete!") | |
# generate_label_files("images/") | |
def generate_csv_files(image_dir): | |
for root, dirs, filenames in os.walk(image_dir): | |
for dir in dirs: | |
get_bbox_visualize(image_dir, dir) | |
print("Text file generation complete!\nGenerating train/val/eval folders") | |
split_data_test_eval_train("egohands/_LABELLED_SAMPLES/") | |
# rename image files so we can have them all in a train/test/eval folder. | |
def rename_files(image_dir): | |
print("Renaming files") | |
loop_index = 0 | |
for root, dirs, filenames in os.walk(image_dir): | |
for dir in dirs: | |
for f in os.listdir(image_dir + dir): | |
if (dir not in f): | |
if(f.split(".")[1] == "jpg"): | |
loop_index += 1 | |
os.rename(image_dir + dir + | |
"/" + f, image_dir + dir + | |
"/" + dir + "_" + f) | |
else: | |
break | |
generate_csv_files("egohands/_LABELLED_SAMPLES/") | |
def extract_folder(dataset_path): | |
print("Egohands dataset already downloaded.\nGenerating CSV files") | |
if not os.path.exists("egohands"): | |
zip_ref = zipfile.ZipFile(dataset_path, 'r') | |
print("> Extracting Dataset files") | |
zip_ref.extractall("egohands") | |
print("> Extraction complete") | |
zip_ref.close() | |
rename_files("egohands/_LABELLED_SAMPLES/") | |
def download_egohands_dataset(dataset_url, dataset_path): | |
is_downloaded = os.path.exists(dataset_path) | |
if not is_downloaded: | |
print( | |
"> downloading egohands dataset. This may take a while (1.3GB, say 3-5mins). Coffee break?") | |
opener = urllib.request.URLopener() | |
opener.retrieve(dataset_url, dataset_path) | |
print("> download complete") | |
extract_folder(dataset_path); | |
else: | |
extract_folder(dataset_path) | |
EGOHANDS_DATASET_URL = "http://vision.soic.indiana.edu/egohands_files/egohands_data.zip" | |
EGO_HANDS_FILE = "egohands_data.zip" | |
download_egohands_dataset(EGOHANDS_DATASET_URL, EGO_HANDS_FILE) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment