Skip to content

Instantly share code, notes, and snippets.

@scottpham
Last active May 24, 2021 22:15
Show Gist options
  • Save scottpham/95b85750af09a1fb5c4a649654282894 to your computer and use it in GitHub Desktop.
Save scottpham/95b85750af09a1fb5c4a649654282894 to your computer and use it in GitHub Desktop.
How to hypothesis test in Python
import scipy.stats as stats
import numpy as np
import scipy.stats.distributions as dist
import statsmodels.api as sm
# calc by hand
va = prop_sub * (1 - prop_sub) # variance
se = np.sqrt(va * (1 / total_high + 1/total_mod)) # grouped standard error
# get t value and p value
test_stat = (phat1 - phat2) / se
p_value = 2 * dist.norm.cdf(-np.abs(test_stat))
print(test_stat, p_value)
# Using SciPy and only stats (no records)
# https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind_from_stats.html
va1 = phat1 * (1 - phat1)
va2 = phat2 * (1 - phat2)
print(va1, va2)
stats.ttest_ind_from_stats(
mean1 = phat1,
std1 = np.sqrt(va1),
nobs1 = n1,
mean2 = phat2,
std2 = np.sqrt(va2),
nobs2 = n2,
)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment