Created
March 15, 2013 21:54
-
-
Save sczizzo/5173372 to your computer and use it in GitHub Desktop.
Examine the relationship between the sidechain separation and protonation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
# -*- coding: UTF-8 -*- | |
from marshal import dump, load | |
from random import sample | |
from glob import glob | |
from pdb import * | |
import sys | |
def run_experiment(residues, interests, ss_code=None, mind=0.0, maxd=100.0): | |
results = [] | |
for interest in interests: | |
left, right = [], [] | |
res_name, a1n, a2n, a3n, a4n = interest | |
matching_residues = filter(lambda r: r['resName'] == res_name, residues) | |
for residue in matching_residues: | |
if ss_code != None and residue['ssCode'] != ss_code: continue | |
distance = residue_distance(residue, a3n, a4n) | |
if distance == None: | |
# print("Error on %s (%.2f): " % (res_name, residue['resNum']), find_atoms('HD2', residue)) | |
continue | |
if len(find_atoms('HD2', residue)) > 0: | |
left.append(distance) | |
else: right.append(distance) | |
results.append([res_name, left, right]) | |
return results | |
def analyze_result(name, data, mind=0.0, maxd=1000.0, nbins=50): | |
print("Average: %.2f Angstrom" % average(data)) | |
print("Median: %.2f Angstrom" % median(data)) | |
rdata = filter(lambda x: mind < x < maxd, data) | |
figure(figsize=[11, 8.5]) | |
hist(rdata, histtype='bar', bins=nbins, label=name) | |
legend() | |
grid() | |
savefig(name + '.png', dpi=300) | |
interests = [ | |
['ASP', 'CB', 'CG', 'OD1', 'OD2'], | |
# ['GLU', 'CG', 'CD', 'OE1', 'OE2'], | |
# ['ASN', 'CB', 'CG', 'OD1', 'ND2'], | |
# ['GLN', 'CG', 'CD', 'OE1', 'NE2'], | |
# ['VAL', 'CA', 'CB', 'CG1', 'CG2'] | |
] | |
try: | |
__IPYTHON__ | |
is_ipy = True | |
except: is_ipy = False | |
all_residues = [] | |
for pdb_fname in glob('nrpdb_hd2/*'): | |
all_residues += extract_models(pdb_fname)[0]['residues'] | |
r = run_experiment(all_residues, interests)[0] | |
print("Protonated: %d, Non-protonated: %d" % (len(r[1]), len(r[2]))) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment