Created
September 15, 2018 14:10
-
-
Save sdcubber/3f1daf3ca47582e4bd8f20ad7a40a859 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
sequence_input = keras.layers.Input((100, 5)) # 100 timesteps, 5 features | |
image_input = keras.layers.Input((128, 128, 3)) # 128x128 pixels, 3 channels | |
auxiliary_input = keras.layers.Input((10,)) # Additional vector input | |
sequence_module = keras.layers.LSTM(128)(sequence_input) | |
image_module = keras.layers.Conv2D(32, 1)(image_input) | |
image_features = keras.layers.Flatten()(image_module) | |
concat = keras.layers.Concatenate()([sequence_module, image_features, auxiliary_input]) | |
classification_output = keras.layers.Dense(1, activation='sigmoid')(concat) | |
regression_output = keras.layers.Dense(12)(concat) | |
# Wrap in a model instance, specify lists of inputs and outputs | |
model = keras.models.Model(inputs=[sequence_input, image_input, auxiliary_input], outputs=[classification_output, | |
regression_output]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment