-
-
Save sdwfrost/0509cbfee74a8e4702140d00deb97e4e to your computer and use it in GitHub Desktop.
Vanilla Char-RNN using TensorFlow
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Vanilla Char-RNN using TensorFlow by Vinh Khuc (@knvinh). | |
Adapted from Karpathy's min-char-rnn.py | |
https://gist.github.com/karpathy/d4dee566867f8291f086 | |
Requires tensorflow>=1.0 | |
BSD License | |
""" | |
import random | |
import numpy as np | |
import tensorflow as tf | |
seed_value = 42 | |
tf.set_random_seed(seed_value) | |
random.seed(seed_value) | |
def one_hot(v): | |
return np.eye(vocab_size)[v] | |
# Data I/O | |
data = open(__file__, 'r').read() # Use this source file as input for RNN | |
chars = sorted(list(set(data))) | |
data_size, vocab_size = len(data), len(chars) | |
print('Data has %d characters, %d unique.' % (data_size, vocab_size)) | |
char_to_ix = {ch: i for i, ch in enumerate(chars)} | |
ix_to_char = {i: ch for i, ch in enumerate(chars)} | |
# Hyper-parameters | |
hidden_size = 100 # hidden layer's size | |
seq_length = 25 # number of steps to unroll | |
learning_rate = 1e-1 | |
inputs = tf.placeholder(shape=[None, vocab_size], dtype=tf.float32, name="inputs") | |
targets = tf.placeholder(shape=[None, vocab_size], dtype=tf.float32, name="targets") | |
init_state = tf.placeholder(shape=[1, hidden_size], dtype=tf.float32, name="state") | |
initializer = tf.random_normal_initializer(stddev=0.1) | |
with tf.variable_scope("RNN") as scope: | |
hs_t = init_state | |
ys = [] | |
for t, xs_t in enumerate(tf.split(inputs, seq_length, axis=0)): | |
if t > 0: scope.reuse_variables() # Reuse variables | |
Wxh = tf.get_variable("Wxh", [vocab_size, hidden_size], initializer=initializer) | |
Whh = tf.get_variable("Whh", [hidden_size, hidden_size], initializer=initializer) | |
Why = tf.get_variable("Why", [hidden_size, vocab_size], initializer=initializer) | |
bh = tf.get_variable("bh", [hidden_size], initializer=initializer) | |
by = tf.get_variable("by", [vocab_size], initializer=initializer) | |
hs_t = tf.tanh(tf.matmul(xs_t, Wxh) + tf.matmul(hs_t, Whh) + bh) | |
ys_t = tf.matmul(hs_t, Why) + by | |
ys.append(ys_t) | |
hprev = hs_t | |
output_softmax = tf.nn.softmax(ys[-1]) # Get softmax for sampling | |
outputs = tf.concat(ys, axis=0) | |
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=targets, logits=outputs)) | |
# Minimizer | |
minimizer = tf.train.AdamOptimizer() | |
grads_and_vars = minimizer.compute_gradients(loss) | |
# Gradient clipping | |
grad_clipping = tf.constant(5.0, name="grad_clipping") | |
clipped_grads_and_vars = [] | |
for grad, var in grads_and_vars: | |
clipped_grad = tf.clip_by_value(grad, -grad_clipping, grad_clipping) | |
clipped_grads_and_vars.append((clipped_grad, var)) | |
# Gradient updates | |
updates = minimizer.apply_gradients(clipped_grads_and_vars) | |
# Session | |
sess = tf.Session() | |
init = tf.global_variables_initializer() | |
sess.run(init) | |
# Initial values | |
n, p = 0, 0 | |
hprev_val = np.zeros([1, hidden_size]) | |
while True: | |
# Initialize | |
if p + seq_length + 1 >= len(data) or n == 0: | |
hprev_val = np.zeros([1, hidden_size]) | |
p = 0 # reset | |
# Prepare inputs | |
input_vals = [char_to_ix[ch] for ch in data[p:p + seq_length]] | |
target_vals = [char_to_ix[ch] for ch in data[p + 1:p + seq_length + 1]] | |
input_vals = one_hot(input_vals) | |
target_vals = one_hot(target_vals) | |
hprev_val, loss_val, _ = sess.run([hprev, loss, updates], | |
feed_dict={inputs: input_vals, | |
targets: target_vals, | |
init_state: hprev_val}) | |
if n % 500 == 0: | |
# Progress | |
print('iter: %d, p: %d, loss: %f' % (n, p, loss_val)) | |
# Do sampling | |
sample_length = 200 | |
start_ix = random.randint(0, len(data) - seq_length) | |
sample_seq_ix = [char_to_ix[ch] for ch in data[start_ix:start_ix + seq_length]] | |
ixes = [] | |
sample_prev_state_val = np.copy(hprev_val) | |
for t in range(sample_length): | |
sample_input_vals = one_hot(sample_seq_ix) | |
sample_output_softmax_val, sample_prev_state_val = \ | |
sess.run([output_softmax, hprev], | |
feed_dict={inputs: sample_input_vals, init_state: sample_prev_state_val}) | |
ix = np.random.choice(range(vocab_size), p=sample_output_softmax_val.ravel()) | |
ixes.append(ix) | |
sample_seq_ix = sample_seq_ix[1:] + [ix] | |
txt = ''.join(ix_to_char[ix] for ix in ixes) | |
print('----\n %s \n----\n' % (txt,)) | |
p += seq_length | |
n += 1 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment