Forked from danijar/blog_tensorflow_sequence_classification.py
Created
May 18, 2017 08:32
-
-
Save sdwfrost/20cdc3c6da0c5989a7850bb97e622241 to your computer and use it in GitHub Desktop.
TensorFlow Sequence Classification
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Example for my blog post at: | |
# https://danijar.com/introduction-to-recurrent-networks-in-tensorflow/ | |
import functools | |
import sets | |
import tensorflow as tf | |
def lazy_property(function): | |
attribute = '_' + function.__name__ | |
@property | |
@functools.wraps(function) | |
def wrapper(self): | |
if not hasattr(self, attribute): | |
setattr(self, attribute, function(self)) | |
return getattr(self, attribute) | |
return wrapper | |
class SequenceClassification: | |
def __init__(self, data, target, dropout, num_hidden=200, num_layers=3): | |
self.data = data | |
self.target = target | |
self.dropout = dropout | |
self._num_hidden = num_hidden | |
self._num_layers = num_layers | |
self.prediction | |
self.error | |
self.optimize | |
@lazy_property | |
def prediction(self): | |
# Recurrent network. | |
network = tf.contrib.rnn.GRUCell(self._num_hidden) | |
network = tf.contrib.rnn.DropoutWrapper( | |
network, output_keep_prob=self.dropout) | |
network = tf.contrib.rnn.MultiRNNCell([network] * self._num_layers) | |
output, _ = tf.nn.dynamic_rnn(network, self.data, dtype=tf.float32) | |
# Select last output. | |
output = tf.transpose(output, [1, 0, 2]) | |
last = tf.gather(output, int(output.get_shape()[0]) - 1) | |
# Softmax layer. | |
weight, bias = self._weight_and_bias( | |
self._num_hidden, int(self.target.get_shape()[1])) | |
prediction = tf.nn.softmax(tf.matmul(last, weight) + bias) | |
return prediction | |
@lazy_property | |
def cost(self): | |
cross_entropy = -tf.reduce_sum(self.target * tf.log(self.prediction)) | |
return cross_entropy | |
@lazy_property | |
def optimize(self): | |
learning_rate = 0.003 | |
optimizer = tf.train.RMSPropOptimizer(learning_rate) | |
return optimizer.minimize(self.cost) | |
@lazy_property | |
def error(self): | |
mistakes = tf.not_equal( | |
tf.argmax(self.target, 1), tf.argmax(self.prediction, 1)) | |
return tf.reduce_mean(tf.cast(mistakes, tf.float32)) | |
@staticmethod | |
def _weight_and_bias(in_size, out_size): | |
weight = tf.truncated_normal([in_size, out_size], stddev=0.01) | |
bias = tf.constant(0.1, shape=[out_size]) | |
return tf.Variable(weight), tf.Variable(bias) | |
def main(): | |
# We treat images as sequences of pixel rows. | |
train, test = sets.Mnist() | |
_, rows, row_size = train.data.shape | |
num_classes = train.target.shape[1] | |
data = tf.placeholder(tf.float32, [None, rows, row_size]) | |
target = tf.placeholder(tf.float32, [None, num_classes]) | |
dropout = tf.placeholder(tf.float32) | |
model = SequenceClassification(data, target, dropout) | |
sess = tf.Session() | |
sess.run(tf.global_variables_initializer()) | |
for epoch in range(10): | |
for _ in range(100): | |
batch = train.sample(10) | |
sess.run(model.optimize, { | |
data: batch.data, target: batch.target, dropout: 0.5}) | |
error = sess.run(model.error, { | |
data: test.data, target: test.target, dropout: 1}) | |
print('Epoch {:2d} error {:3.1f}%'.format(epoch + 1, 100 * error)) | |
if __name__ == '__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment