Last active
June 8, 2019 13:01
-
-
Save sdwfrost/450cd038405a20970bce307cc44403b8 to your computer and use it in GitHub Desktop.
Jupyter notebook for MLJ using Iris data and DecisionTree
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"\u001b[34mSupervisedTask{} @ 3…62\u001b[39m\n" | |
] | |
}, | |
"execution_count": 1, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"using MLJ\n", | |
"iris = load_iris()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"\u001b[34mSupervisedTask{} @ 3…62\u001b[39m\n" | |
] | |
}, | |
"execution_count": 2, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"iris" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"import MLJModels ✔\n", | |
"import DecisionTree ✔\n", | |
"import MLJModels.DecisionTree_.DecisionTreeClassifier ✔\n" | |
] | |
} | |
], | |
"source": [ | |
"@load DecisionTreeClassifier" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"DecisionTreeClassifier(pruning_purity = 1.0,\n", | |
" max_depth = 2,\n", | |
" min_samples_leaf = 1,\n", | |
" min_samples_split = 2,\n", | |
" min_purity_increase = 0.0,\n", | |
" n_subfeatures = 0.0,\n", | |
" display_depth = 5,\n", | |
" post_prune = false,\n", | |
" merge_purity_threshold = 0.9,)\u001b[34m @ 8…98\u001b[39m" | |
] | |
}, | |
"execution_count": 4, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"tree_model = DecisionTreeClassifier(max_depth=2)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"\u001b[34mMachine{DecisionTreeClassifier} @ 8…47\u001b[39m\n" | |
] | |
}, | |
"execution_count": 5, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"tree = machine(tree_model, iris)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"┌ Info: Training \u001b[34mMachine{DecisionTreeClassifier} @ 8…47\u001b[39m.\n", | |
"└ @ MLJ /home/simon/.julia/dev/MLJ/src/machines.jl:130\n" | |
] | |
}, | |
{ | |
"ename": "MethodError", | |
"evalue": "MethodError: no method matching build_tree(::CategoricalArrays.CategoricalArray{String,1,UInt32,String,CategoricalArrays.CategoricalString{UInt32},Union{}}, ::Array{Float64,2}, ::Float64, ::Int64, ::Int64, ::Int64, ::Float64)\nClosest candidates are:\n build_tree(!Matched::Array{T<:Float64,1}, ::Array{S,2}, ::Any, ::Any, ::Any, ::Any, ::Any; rng) where {S, T<:Float64} at /home/simon/.julia/dev/DecisionTree/src/regression/main.jl:27\n build_tree(!Matched::Array{T,1}, ::Array{S,2}, ::Any, ::Any, ::Any, ::Any, ::Any; rng) where {S, T} at /home/simon/.julia/dev/DecisionTree/src/classification/main.jl:83\n build_tree(!Matched::Array{T<:Float64,1}, ::Array{S,2}, ::Any, ::Any, ::Any, ::Any) where {S, T<:Float64} at /home/simon/.julia/dev/DecisionTree/src/regression/main.jl:27\n ...", | |
"output_type": "error", | |
"traceback": [ | |
"MethodError: no method matching build_tree(::CategoricalArrays.CategoricalArray{String,1,UInt32,String,CategoricalArrays.CategoricalString{UInt32},Union{}}, ::Array{Float64,2}, ::Float64, ::Int64, ::Int64, ::Int64, ::Float64)\nClosest candidates are:\n build_tree(!Matched::Array{T<:Float64,1}, ::Array{S,2}, ::Any, ::Any, ::Any, ::Any, ::Any; rng) where {S, T<:Float64} at /home/simon/.julia/dev/DecisionTree/src/regression/main.jl:27\n build_tree(!Matched::Array{T,1}, ::Array{S,2}, ::Any, ::Any, ::Any, ::Any, ::Any; rng) where {S, T} at /home/simon/.julia/dev/DecisionTree/src/classification/main.jl:83\n build_tree(!Matched::Array{T<:Float64,1}, ::Array{S,2}, ::Any, ::Any, ::Any, ::Any) where {S, T<:Float64} at /home/simon/.julia/dev/DecisionTree/src/regression/main.jl:27\n ...", | |
"", | |
"Stacktrace:", | |
" [1] fit(::DecisionTreeClassifier, ::Int64, ::DataFrames.DataFrame, ::CategoricalArrays.CategoricalArray{String,1,UInt32,String,CategoricalArrays.CategoricalString{UInt32},Union{}}) at /home/simon/.julia/dev/MLJModels/src/DecisionTree.jl:110", | |
" [2] #fit!#3(::Array{Int64,1}, ::Int64, ::Bool, ::Function, ::Machine{DecisionTreeClassifier}) at /home/simon/.julia/dev/MLJ/src/machines.jl:131", | |
" [3] (::getfield(StatsBase, Symbol(\"#kw##fit!\")))(::NamedTuple{(:rows,),Tuple{Array{Int64,1}}}, ::typeof(fit!), ::Machine{DecisionTreeClassifier}) at ./none:0", | |
" [4] top-level scope at In[6]:2" | |
] | |
} | |
], | |
"source": [ | |
"train, test = partition(eachindex(iris), 0.7, shuffle=true); # 70:30 split\n", | |
"fit!(tree, rows=train)\n", | |
"yhat = predict(tree, iris);\n", | |
"misclassification_rate(yhat, iris)" | |
] | |
} | |
], | |
"metadata": { | |
"@webio": { | |
"lastCommId": null, | |
"lastKernelId": null | |
}, | |
"kernelspec": { | |
"display_name": "Julia 1.1.0", | |
"language": "julia", | |
"name": "julia-1.1" | |
}, | |
"language_info": { | |
"file_extension": ".jl", | |
"mimetype": "application/julia", | |
"name": "julia", | |
"version": "1.1.0" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment