A list of useful commands for the FFmpeg command line tool.
Download FFmpeg: https://www.ffmpeg.org/download.html
Full documentation: https://www.ffmpeg.org/ffmpeg.html
| import onnxruntime as ort | |
| import numpy as np | |
| import time | |
| import argparse | |
| import os | |
| def parse_args(): | |
| parser = argparse.ArgumentParser(description="Benchmark FPS for an ONNX model.") | |
| parser.add_argument("--model-path", type=str, default="model.onnx", | |
| help="Path to the ONNX model file (default: model.onnx)") |
A list of useful commands for the FFmpeg command line tool.
Download FFmpeg: https://www.ffmpeg.org/download.html
Full documentation: https://www.ffmpeg.org/ffmpeg.html
| name: "RHDLatentHMMap" | |
| #-----Generate random image index for training 0 | |
| layer { | |
| name: "image_index_0" | |
| type: "DeepHandModelGenRandIndex" | |
| top: "image_index_0" | |
| gen_rand_index_param { | |
| index_lower_bound: 0 | |
| index_upper_bound: 10000 |
| #include <functional> | |
| #include <chrono> | |
| #include <iostream> | |
| template <class> struct ExeTime; | |
| // Execution time decorator | |
| template <class R, class... Args> | |
| struct ExeTime<R(Args ...)> { | |
| public: |
You could always use Smart HTTP.
For read-only (git:) urls, install corkscrew.
Download git-proxy.sh. Put it somewhere and make it executable.
Run git config --global core.gitproxy '/usr/local/bin/git-proxy.sh'
To clone, push, pull over ssh, add the contents of ssh_config to your ~/.ssh/config file.
| [a,b,c,d for a,b in AB for c,d in CD if a if b if c] |
| import numpy as np | |
| from random import shuffle | |
| from past.builtins import xrange | |
| def softmax_loss_naive(W, X, y, reg): | |
| """ | |
| Softmax loss function, naive implementation (with loops) | |
| Inputs have dimension D, there are C classes, and we operate on minibatches | |
| of N examples. |
| import numpy as np | |
| from random import shuffle | |
| from past.builtins import xrange | |
| def svm_loss_naive(W, X, y, reg): | |
| """ | |
| Structured SVM loss function, naive implementation (with loops). | |
| Inputs have dimension D, there are C classes, and we operate on minibatches | |
| of N examples. |