Created
May 7, 2021 14:50
-
-
Save seabbs/284f0b73d54ce3977fbd7d9c202aa428 to your computer and use it in GitHub Desktop.
An overview of the features included in the 0.9.1 release of covidregionaldata. See the release notes for more details: https://github.com/epiforecasts/covidregionaldata/releases/tag/v0.9.1
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(covidregionaldata) | |
# set up a data cache | |
start_using_memoise() | |
#> Using a cache at: /tmp/RtmphiSeWY | |
# check for supported countries | |
get_available_datasets() | |
#> # A tibble: 18 x 8 | |
#> origin class level_1_region level_2_region level_3_region type data_urls | |
#> <chr> <chr> <chr> <chr> <chr> <chr> <chr> | |
#> 1 Belgium Belg… region province <NA> regi… https://ep… | |
#> 2 Brazil Braz… state city <NA> regi… https://gi… | |
#> 3 Canada Cana… province <NA> <NA> regi… https://he… | |
#> 4 Colombia Colo… departamento <NA> <NA> regi… https://ra… | |
#> 5 Cuba Cuba provincia <NA> <NA> regi… https://co… | |
#> 6 Europea… ECDC country <NA> <NA> nati… https://op… | |
#> 7 France Fran… region department <NA> regi… https://ww… | |
#> 8 Germany Germ… bundesland landkreis <NA> regi… https://op… | |
#> 9 Google Goog… country subregion subregion2 nati… https://st… | |
#> 10 India India state <NA> <NA> regi… https://ap… | |
#> 11 Italy Italy regioni <NA> <NA> regi… https://ra… | |
#> 12 John Ho… JHU country region <NA> nati… https://ra… | |
#> 13 Lithuan… Lith… county municipality <NA> regi… https://op… | |
#> 14 Mexico Mexi… estado municipio <NA> regi… Downloads/… | |
#> 15 South A… Sout… province <NA> <NA> regi… https://ra… | |
#> 16 United … UK region authority <NA> regi… https://ww… | |
#> 17 United … USA state county <NA> regi… https://ra… | |
#> 18 World H… WHO country <NA> <NA> nati… https://co… | |
#> # … with 1 more variable: source_data_cols <chr> | |
# get national level data from the WHO | |
get_national_data(source = "who") | |
#> Downloading data from https://covid19.who.int/WHO-COVID-19-global-data.csv | |
#> Rows: 116,255 | |
#> Columns: 8 | |
#> Delimiter: "," | |
#> chr [3]: Country_code, Country, WHO_region | |
#> dbl [4]: New_cases, Cumulative_cases, New_deaths, Cumulative_deaths | |
#> date [1]: Date_reported | |
#> | |
#> Use `spec()` to retrieve the guessed column specification | |
#> Pass a specification to the `col_types` argument to quiet this message | |
#> Cleaning data | |
#> Processing data | |
#> # A tibble: 116,366 x 15 | |
#> date un_region who_region country iso_code cases_new cases_total | |
#> <date> <chr> <chr> <chr> <chr> <dbl> <dbl> | |
#> 1 2020-01-03 Asia EMRO Afghanistan AF 0 0 | |
#> 2 2020-01-03 Europe EURO Albania AL 0 0 | |
#> 3 2020-01-03 Africa AFRO Algeria DZ 0 0 | |
#> 4 2020-01-03 Oceania WPRO American Samoa AS 0 0 | |
#> 5 2020-01-03 Europe EURO Andorra AD 0 0 | |
#> 6 2020-01-03 Africa AFRO Angola AO 0 0 | |
#> 7 2020-01-03 Americas AMRO Anguilla AI 0 0 | |
#> 8 2020-01-03 Americas AMRO Antigua & Bar… AG 0 0 | |
#> 9 2020-01-03 Americas AMRO Argentina AR 0 0 | |
#> 10 2020-01-03 Asia EURO Armenia AM 0 0 | |
#> # … with 116,356 more rows, and 8 more variables: deaths_new <dbl>, | |
#> # deaths_total <dbl>, recovered_new <dbl>, recovered_total <dbl>, | |
#> # hosp_new <dbl>, hosp_total <dbl>, tested_new <dbl>, tested_total <dbl> | |
# get national level data from Google | |
get_national_data(source = "google", verbose = FALSE) | |
#> # A tibble: 1,586,497 x 21 | |
#> date country iso_3166_1_alpha… cases_new cases_total deaths_new | |
#> <date> <chr> <chr> <dbl> <dbl> <dbl> | |
#> 1 2002-10-09 Afghanistan AFG NA NA NA | |
#> 2 2002-10-09 Albania ALB NA NA NA | |
#> 3 2002-10-09 Algeria DZA NA NA NA | |
#> 4 2002-10-09 American Samoa ASM NA NA NA | |
#> 5 2002-10-09 Andorra AND NA NA NA | |
#> 6 2002-10-09 Angola AGO NA NA NA | |
#> 7 2002-10-09 Anguilla AIA NA NA NA | |
#> 8 2002-10-09 Antigua and Ba… ATG NA NA NA | |
#> 9 2002-10-09 Argentina ARG NA NA NA | |
#> 10 2002-10-09 Armenia ARM NA NA NA | |
#> # … with 1,586,487 more rows, and 15 more variables: deaths_total <dbl>, | |
#> # recovered_new <dbl>, recovered_total <dbl>, hosp_new <dbl>, | |
#> # hosp_total <dbl>, tested_new <dbl>, tested_total <dbl>, | |
#> # aggregation_level <dbl>, current_hospitalized <dbl>, | |
#> # new_intensive_care <dbl>, total_intensive_care <dbl>, | |
#> # current_intensive_care <dbl>, new_ventilator <dbl>, total_ventilator <dbl>, | |
#> # current_ventilator <dbl> | |
# get national level data from the JHU | |
get_national_data(source = "JHU", verbose = FALSE) | |
#> # A tibble: 106,446 x 16 | |
#> date country iso_3166_1_alpha… cases_new cases_total deaths_new | |
#> <date> <chr> <chr> <dbl> <dbl> <dbl> | |
#> 1 2020-01-22 Afghanistan AFG 0 0 0 | |
#> 2 2020-01-22 Albania ALB 0 0 0 | |
#> 3 2020-01-22 Algeria DZA 0 0 0 | |
#> 4 2020-01-22 Andorra AND 0 0 0 | |
#> 5 2020-01-22 Angola AGO 0 0 0 | |
#> 6 2020-01-22 Antigua and Ba… ATG 0 0 0 | |
#> 7 2020-01-22 Argentina ARG 0 0 0 | |
#> 8 2020-01-22 Armenia ARM 0 0 0 | |
#> 9 2020-01-22 Australia AUS 0 0 0 | |
#> 10 2020-01-22 Austria AUT 0 0 0 | |
#> # … with 106,436 more rows, and 10 more variables: deaths_total <dbl>, | |
#> # recovered_new <dbl>, recovered_total <dbl>, hosp_new <dbl>, | |
#> # hosp_total <dbl>, tested_new <dbl>, tested_total <dbl>, | |
#> # level_2_region_code <dbl>, Lat <dbl>, Long <dbl> | |
# get regional level data for the UK with NHS regions data | |
# here we turn off all optional processing steps | |
get_regional_data("uk", nhsregions = TRUE, process_fns = c(), verbose = FALSE) | |
#> # A tibble: 5,093 x 16 | |
#> date region region_code cases_new cases_total deaths_new deaths_total | |
#> <date> <chr> <lgl> <dbl> <dbl> <dbl> <dbl> | |
#> 1 2020-01-30 East of… NA NA NA NA NA | |
#> 2 2020-01-30 England NA 2 2 NA NA | |
#> 3 2020-01-30 London NA NA NA NA NA | |
#> 4 2020-01-30 Midlands NA NA NA NA NA | |
#> 5 2020-01-30 North E… NA 1 1 NA NA | |
#> 6 2020-01-30 North W… NA NA NA NA NA | |
#> 7 2020-01-30 Norther… NA NA NA NA NA | |
#> 8 2020-01-30 Scotland NA NA NA NA NA | |
#> 9 2020-01-30 South E… NA NA NA NA NA | |
#> 10 2020-01-30 South W… NA NA NA NA NA | |
#> # … with 5,083 more rows, and 9 more variables: recovered_new <dbl>, | |
#> # recovered_total <dbl>, hosp_new <dbl>, hosp_total <dbl>, tested_new <dbl>, | |
#> # tested_total <dbl>, hosp_new_first_admissions <dbl>, hosp_new_blend <dbl>, | |
#> # release_date <date> | |
# initialise the Google data source for level 2 data | |
google <- initialise_dataclass("google", level = 2) | |
# download the Google source (here uses the cache defined above) | |
google$download() | |
#> Downloading data from https://storage.googleapis.com/covid19-open-data/v2/epidemiology.csv | |
#> Downloading data from https://storage.googleapis.com/covid19-open-data/v2/hospitalizations.csv | |
#> Downloading data from https://storage.googleapis.com/covid19-open-data/v2/index.csv | |
# clean the Google data | |
google$clean() | |
#> Cleaning data | |
# show available regions with level 2 data | |
google$available_regions() | |
#> [1] "Argentina" "Spain" | |
#> [3] "Mexico" "France" | |
#> [5] "Switzerland" "Germany" | |
#> [7] "Indonesia" "Thailand" | |
#> [9] "United States of America" "Japan" | |
#> [11] "South Korea" "Czech Republic" | |
#> [13] "China" "Ukraine" | |
#> [15] "Philippines" "Australia" | |
#> [17] "Canada" "Malaysia" | |
#> [19] "Taiwan" "United Kingdom" | |
#> [21] "Sweden" "Estonia" | |
#> [23] "Italy" "Brazil" | |
#> [25] "Austria" "Portugal" | |
#> [27] "Belgium" "Chile" | |
#> [29] "Colombia" "Peru" | |
#> [31] "Israel" "Netherlands" | |
#> [33] "India" "Poland" | |
#> [35] "Haiti" "Norway" | |
#> [37] "Afghanistan" "Mozambique" | |
#> [39] "Russia" "South Africa" | |
#> [41] "Sierra Leone" "Romania" | |
#> [43] "Democratic Republic of the Congo" "Venezuela" | |
#> [45] "Sudan" "Pakistan" | |
#> [47] "Kenya" "Iraq" | |
#> [49] "Bangladesh" "Libya" | |
# filter to UK data available from Google | |
google$filter("united kingdom") | |
#> Filtering data to: United Kingdom | |
# process UK data | |
google$process() | |
#> Processing data | |
# return UK data | |
google$return() | |
#> # A tibble: 6,874 x 23 | |
#> date country iso_3166_1_alph… subregion iso_code cases_new cases_total | |
#> <date> <chr> <chr> <chr> <chr> <dbl> <dbl> | |
#> 1 2020-01-01 United … GBR East Mid… UKF NA NA | |
#> 2 2020-01-01 United … GBR East of … UKH NA NA | |
#> 3 2020-01-01 United … GBR England ENG NA NA | |
#> 4 2020-01-01 United … GBR London R… UKI NA NA | |
#> 5 2020-01-01 United … GBR North Ea… UKC NA NA | |
#> 6 2020-01-01 United … GBR North We… UKD NA NA | |
#> 7 2020-01-01 United … GBR Northern… NIR NA NA | |
#> 8 2020-01-01 United … GBR Scotland SCT NA NA | |
#> 9 2020-01-01 United … GBR South Ea… UKJ NA NA | |
#> 10 2020-01-01 United … GBR South We… UKK NA NA | |
#> # … with 6,864 more rows, and 16 more variables: deaths_new <dbl>, | |
#> # deaths_total <dbl>, recovered_new <dbl>, recovered_total <dbl>, | |
#> # hosp_new <dbl>, hosp_total <dbl>, tested_new <dbl>, tested_total <dbl>, | |
#> # aggregation_level <dbl>, current_hospitalized <dbl>, | |
#> # new_intensive_care <dbl>, total_intensive_care <dbl>, | |
#> # current_intensive_care <dbl>, new_ventilator <dbl>, total_ventilator <dbl>, | |
#> # current_ventilator <dbl> | |
#' Created on 2021-05-07 by the reprex package v2.0.0 <https://reprex.tidyverse.org> |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment