Created
June 7, 2019 10:37
-
-
Save seabbs/39a78ed69c65132c1e0a44a75d0eabf6 to your computer and use it in GitHub Desktop.
Looking at normalised spending gap for global Tuberculosis funding
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Install and load the package -------------------------------------------- | |
if(!require(pacman))install.packages("pacman") | |
pacman::p_load('dplyr', 'ggplot2', 'getTBinR') | |
pacman::p_load_gh('thomasp85/patchwork') | |
pacman::p_load_gh('bbc/bbplot') | |
# Look at available datasets\ --------------------------------------------- | |
available_datasets | |
# Download data of interest ----------------------------------------------- | |
tb <- get_tb_burden(additional_datasets = "Expenditure and utilisation") | |
dict <- get_data_dict() | |
# Look up variables ------------------------------------------------------- | |
search_data_dict(dataset = "Expenditure and utilisation") | |
## expenditure (exp_tot) and funding (rcvd_tot_sources) are likely to be of some interest | |
tb <- tb %>% | |
mutate(spending_gap = 100 * (rcvd_tot_sources - exp_tot) / rcvd_tot_sources) %>% | |
mutate(spending_gap = replace(spending_gap, rcvd_tot_sources < 10e6 | e_inc_100k < 10, | |
NA)) | |
label <- "% difference between funding and expenditure" | |
# Map budget gap ---------------------------------------------------------- | |
map <- map_tb_burden(df = tb, metric = "spending_gap", | |
metric_label = label, | |
year = 2017) + | |
labs(title = "Tuberculosis (TB) spending gap", | |
subtitle = paste0(label, " - data from 2017"), | |
caption = "") + | |
bbc_style() + | |
theme(panel.background = element_blank(), | |
axis.text = element_blank()) | |
# Get countries with largest spending gap --------------------------------- | |
largest_gap_countries <- tb %>% | |
filter(year == 2017) %>% | |
arrange(desc(spending_gap)) %>% | |
slice(1:10) %>% | |
pull(country) | |
# Plot countries with largest spending gap -------------------------------- | |
plot_top <- plot_tb_burden_overview(df = tb, | |
countries = largest_gap_countries, | |
metric = "spending_gap", | |
metric_label = label, | |
year = 2017) + | |
bbc_style() + | |
theme(legend.position = "none") + | |
labs(subtitle = "Countries with the larget % spending \n gap", | |
caption = "") | |
# Plot incidence rates in these countries ---------------------------------- | |
plot_inc <- plot_tb_burden_summary(df = tb, | |
countries = largest_gap_countries, | |
stat = "rate", | |
compare_to_region = FALSE, | |
compare_all_regions = FALSE, | |
facet = "Area", | |
scales = "free_y") + | |
bbc_style() + | |
theme(legend.position = "none", plot.caption = element_text(hjust = 1)) + | |
labs( | |
subtitle = "TB incidence rates - for countries with the largest % spending gap", | |
caption = "@seabbs | Using #getTBinR | Data sourced from: World Health Organization | Countries with funding below 10 million dollars or with TB incidence rates below 10 per 100,000 people have been removed.") | |
# Make storyboard --------------------------------------------------------- | |
storyboard <- (map + plot_top + plot_layout(widths = c(5, 2))) / | |
(plot_inc) | |
## Save storyboard | |
ggsave("storyboard.png", | |
storyboard, width = 20, height = 15, dpi = 330) |
Author
seabbs
commented
Jun 7, 2019
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment