Last active
September 2, 2020 07:13
-
-
Save seanbenhur/749aede8c1f2d5c1bb0862fee0718162 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Declare Siamese Network | |
net = SiameseNetwork().cuda() | |
# Decalre Loss Function | |
criterion = ContrastiveLoss() | |
# Declare Optimizer | |
optimizer = th.optim.Adam(net.parameters(), lr=1e-3, weight_decay=0.0005) | |
#train the model | |
def train(): | |
loss=[] | |
counter=[] | |
iteration_number = 0 | |
for epoch in range(1,config.epochs): | |
for i, data in enumerate(train_dataloader,0): | |
img0, img1 , label = data | |
img0, img1 , label = img0.cuda(), img1.cuda() , label.cuda() | |
optimizer.zero_grad() | |
output1,output2 = net(img0,img1) | |
loss_contrastive = criterion(output1,output2,label) | |
loss_contrastive.backward() | |
optimizer.step() | |
print("Epoch {}\n Current loss {}\n".format(epoch,loss_contrastive.item())) | |
iteration_number += 10 | |
counter.append(iteration_number) | |
loss.append(loss_contrastive.item()) | |
show_plot(counter, loss) | |
return net | |
#set the device to cuda | |
device = torch.device('cuda' if th.cuda.is_available() else 'cpu') | |
model = train() | |
torch.save(model.state_dict(), "model.pt") | |
print("Model Saved Successfully") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment