Skip to content

Instantly share code, notes, and snippets.

@seangeleno
Created September 11, 2023 10:27
Show Gist options
  • Save seangeleno/990203ae037ed2b6554992720d988337 to your computer and use it in GitHub Desktop.
Save seangeleno/990203ae037ed2b6554992720d988337 to your computer and use it in GitHub Desktop.
help me down
<canvas></canvas>
<img id="heightmap" src="" alt="">
"use strict";
{
////////////////////////////////////////////////////////////////
const canvas = {
init() {
this.elem = document.querySelector("canvas");
const gl = this.elem.getContext("webgl", { alpha: false });
const vertexShader = gl.createShader(gl.VERTEX_SHADER);
const fragmentShader = gl.createShader(gl.FRAGMENT_SHADER);
gl.shaderSource(vertexShader, `
uniform mat4 camProj, camView;
attribute vec3 aPosition, aNormal, aColor;
varying vec3 vColor;
const vec3 lightDir = vec3(0, 0, 1);
void main(void) {
vec3 normal = mat3(camView) * aNormal;
vec4 pos = camView * vec4(aPosition, 1.0);
vColor = aColor * max(dot(normal, normalize(lightDir - pos.xyz)), 0.2);
gl_Position = camProj * pos;
}
`);
gl.shaderSource(fragmentShader, `
precision highp float;
varying vec3 vColor;
void main(void) {
gl_FragColor = vec4(vColor, 1.0);
}
`);
gl.compileShader(vertexShader);
gl.compileShader(fragmentShader);
this.program = gl.createProgram();
gl.attachShader(this.program, vertexShader);
gl.attachShader(this.program, fragmentShader);
gl.linkProgram(this.program);
gl.useProgram(this.program);
return gl;
},
resize() {
this.width = this.elem.width = this.elem.offsetWidth;
this.height = this.elem.height = this.elem.offsetHeight;
camera.proj.perspective(60, this.width / this.height).load();
gl.viewport(0, 0, gl.drawingBufferWidth, gl.drawingBufferHeight);
}
};
////////////////////////////////////////////////////////////////
const Mat4 = class {
constructor(program, uName) {
this.u = gl.getUniformLocation(program, uName);
this.data = new Float32Array([
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1
]);
}
identity() {
const d = this.data;
d[0] = 1;
d[1] = 0;
d[2] = 0;
d[3] = 0;
d[4] = 0;
d[5] = 1;
d[6] = 0;
d[7] = 0;
d[8] = 0;
d[9] = 0;
d[10] = 1;
d[11] = 0;
d[12] = 0;
d[13] = 0;
d[14] = 0;
d[15] = 1;
return this;
}
translate(x, y, z) {
const d = this.data;
d[12] = d[0] * x + d[4] * y + d[8] * z + d[12];
d[13] = d[1] * x + d[5] * y + d[9] * z + d[13];
d[14] = d[2] * x + d[6] * y + d[10] * z + d[14];
d[15] = d[3] * x + d[7] * y + d[11] * z + d[15];
return this;
}
rotateX(angle) {
const d = this.data;
const s = Math.sin(angle);
const c = Math.cos(angle);
const a10 = d[4];
const a11 = d[5];
const a12 = d[6];
const a13 = d[7];
const a20 = d[8];
const a21 = d[9];
const a22 = d[10];
const a23 = d[11];
d[4] = a10 * c + a20 * s;
d[5] = a11 * c + a21 * s;
d[6] = a12 * c + a22 * s;
d[7] = a13 * c + a23 * s;
d[8] = a10 * -s + a20 * c;
d[9] = a11 * -s + a21 * c;
d[10] = a12 * -s + a22 * c;
d[11] = a13 * -s + a23 * c;
return this;
}
rotateY(angle) {
const d = this.data;
const s = Math.sin(angle);
const c = Math.cos(angle);
const a00 = d[0];
const a01 = d[1];
const a02 = d[2];
const a03 = d[3];
const a20 = d[8];
const a21 = d[9];
const a22 = d[10];
const a23 = d[11];
d[0] = a00 * c + a20 * -s;
d[1] = a01 * c + a21 * -s;
d[2] = a02 * c + a22 * -s;
d[3] = a03 * c + a23 * -s;
d[8] = a00 * s + a20 * c;
d[9] = a01 * s + a21 * c;
d[10] = a02 * s + a22 * c;
d[11] = a03 * s + a23 * c;
return this;
}
rotateZ(angle) {
const d = this.data;
const s = Math.sin(angle);
const c = Math.cos(angle);
const a00 = d[0];
const a01 = d[1];
const a02 = d[2];
const a03 = d[3];
const a10 = d[4];
const a11 = d[5];
const a12 = d[6];
const a13 = d[7];
d[0] = a00 * c + a10 * s;
d[1] = a01 * c + a11 * s;
d[2] = a02 * c + a12 * s;
d[3] = a03 * c + a13 * s;
d[4] = a00 * -s + a10 * c;
d[5] = a01 * -s + a11 * c;
d[6] = a02 * -s + a12 * c;
d[7] = a03 * -s + a13 * c;
return this;
}
perspective(fov, aspect) {
const d = this.data;
const near = 0.01;
const far = 100;
const top = near * Math.tan(fov * Math.PI / 360);
const right = top * aspect;
const left = -right;
const bottom = -top;
d[0] = 2 * near / (right - left);
d[1] = 0;
d[2] = 0;
d[3] = 0;
d[4] = 0;
d[5] = 2 * near / (top - bottom);
d[6] = 0;
d[7] = 0;
d[8] = (right + left) / (right - left);
d[9] = (top + bottom) / (top - bottom);
d[10] = -(far + near) / (far - near);
d[11] = -1;
d[12] = 0;
d[13] = 0;
d[14] = -(2 * far * near) / (far - near);
d[15] = 0;
return this;
}
load() {
gl.uniformMatrix4fv(this.u, gl.FALSE, this.data);
return this;
}
};
////////////////////////////////////////////////////////////////
const gl = canvas.init();
gl.enable(gl.DEPTH_TEST);
gl.enable(gl.CULL_FACE);
const camera = {
proj: new Mat4(canvas.program, "camProj").load(),
view: new Mat4(canvas.program, "camView").load()
};
canvas.resize();
window.addEventListener("resize", () => canvas.resize(), false);
////////////////////////////////////////////////////////////////
const decode = () => {
const img = document.getElementById("heightmap");
const width = img.width;
const height = img.height;
const cmap = document.createElement("canvas");
cmap.width = width;
cmap.height = height;
const cty = cmap.getContext("2d");
cty.drawImage(img, 0, 0);
const hmap = cty.getImageData(0, 0, width, height).data;
// brillance
for (let i = 0; i < width * height * 4; i += 4) {
hmap[i + 3] = 0.34 * hmap[i] + 0.5 * hmap[i + 1] + 0.16 * hmap[i + 2];
}
let vertices = new Float32Array(6000000);
let iV = 0;
const cube = (x, z, l, h, w, r, g, b) => [
x,h,z,0,1,0,r,g,b,x,h,z+w,0,1,0,r,g,b,x+l,h,z+w,0,1,0,r,g,b,x,h,z,0,1,0,r,g,b,x+l,h,z+w,0,1,0,r,g,b,x+l,h,z,0,1,0,r,g,b,
x,0,z,-1,0,0,r,g,b,x,0,z+w,-1,0,0,r,g,b,x,h,z+w,-1,0,0,r,g,b,x,0,z,-1,0,0,r,g,b,x,h,z+w,-1,0,0,r,g,b,x,h,z,-1,0,0,r,g,b,
x+l,0,z,1,0,0,r,g,b,x+l,h,z,1,0,0,r,g,b,x+l,h,z+w,1,0,0,r,g,b,x+l,0,z,1,0,0,r,g,b,x+l,h,z+w,1,0,0,r,g,b,x+l,0,z+w,1,0,0,r,g,b,
x,0,z,0,0,-1,r,g,b,x,h,z,0,0,-1,r,g,b,x+l,h,z,0,0,-1,r,g,b,x,0,z,0,0,-1,r,g,b,x+l,h,z,0,0,-1,r,g,b,x+l,0,z,0,0,-1,r,g,b,
x,0,z+w,0,0,1,r,g,b,x+l,0,z+w,0,0,1,r,g,b,x+l,h,z+w,0,0,1,r,g,b,x,0,z+w,0,0,1,r,g,b,x+l,h,z+w,0,0,1,r,g,b,x,h,z+w,0,0,1,r,g,b
];
const attribute = (program, name, data, size, stride, offset) => {
if (data !== null) {
const buffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, buffer);
gl.bufferData(gl.ARRAY_BUFFER, data, gl.STATIC_DRAW);
}
const index = gl.getAttribLocation(program, name);
gl.enableVertexAttribArray(index);
gl.vertexAttribPointer(index, size, gl.FLOAT, false, stride, offset);
};
const increaseArray = (oldArray) => {
const newArray = new Float32Array(oldArray.length * 1.25);
newArray.set(oldArray);
return newArray;
};
const concat = (a1, a2, index) => {
if (index + a2.length > vertices.length) vertices = increaseArray(vertices);
for (let i = 0, l = a2.length; i < l; i++) {
a1[index++] = a2[i];
}
return index;
};
const Rect = class {
constructor(x0, y0, w0, h0) {
this.x = x0;
this.y = y0;
this.w = w0;
this.h = h0;
x0 = Math.floor(x0);
y0 = Math.floor(y0);
w0 = Math.ceil(w0);
h0 = Math.ceil(h0);
const n = w0 * h0;
let r = 0, g = 0, b = 0, l = 0;
for (let x = x0; x < x0 + w0; x++) {
for (let y = y0; y < y0 + h0; y++) {
const p = (y * width + x) * 4;
r += hmap[p + 0];
g += hmap[p + 1];
b += hmap[p + 2];
l += hmap[p + 3];
}
}
// average colors
this.r = (r / n)|0;
this.g = (g / n)|0;
this.b = (b / n)|0;
this.l = (l / n)|0;
// standard deviation
let sd = 0;
for (let x = x0; x < x0 + w0; x++) {
for (let y = y0; y < y0 + h0; y++) {
const l = hmap[(y * width + x) * 4 + 3] - this.l;
sd += (l * l);
}
}
this.sd = Math.sqrt(sd / n);
}
draw() {
if (this.l > 1) iV = concat(vertices, cube(
(this.x - width * 0.5) * 0.1,
(this.y - height * 0.5) * 0.1,
this.w * 0.1,
this.l * 0.02,
this.h * 0.1,
this.r / 256,
this.g / 256,
this.b / 256
), iV);
}
};
const rect = new Rect(0, 0, width, height);
const divide = (rect) => {
if (rect.w > 1 || rect.h > 1) {
if (rect.sd > 8) {
const hw = rect.w * 0.5;
const hh = rect.h * 0.5;
divide(new Rect(rect.x, rect.y, hw, hh));
divide(new Rect(rect.x + hw, rect.y, hw, hh));
divide(new Rect(rect.x, rect.y + hh, hw, hh));
divide(new Rect(rect.x + hw, rect.y + hh, hw, hh));
} else {
rect.draw();
}
} else {
rect.draw();
}
}
divide(rect);
attribute(canvas.program, "aPosition", vertices, 3, 36, 0);
attribute(canvas.program, "aNormal", null, 3, 36, 12);
attribute(canvas.program, "aColor", null, 3, 36, 24);
return iV / 9;
}
const pointer = {
init(canvas) {
this.x = canvas.width * 0.5;
this.y = canvas.height * 0.5;
this.ex = this.x;
this.ey = this.y * 2;
["mousemove", "touchstart", "touchmove"].forEach((event, touch) => {
canvas.elem.addEventListener(
event,
e => {
if (touch) {
e.preventDefault();
this.x = e.targetTouches[0].clientX;
this.y = e.targetTouches[0].clientY;
} else {
this.x = e.clientX;
this.y = e.clientY;
}
},
false
);
});
},
ease(step) {
this.ex += (this.x - this.ex) * step;
this.ey += (this.y - this.ey) * step;
}
};
pointer.init(canvas);
////////////////////////////////////////////////////////////////
const run = () => {
requestAnimationFrame(run);
pointer.ease(0.02);
const rx = (pointer.ex - canvas.width * 0.5) / (canvas.width * 0.35);
const ry = (-pointer.ey + canvas.height * 0.5) / (canvas.height * 0.35);
camera.view
.identity()
.translate(0, ry * 4, -50 + Math.sqrt(rx * rx + ry * ry) * 30)
.rotateX(Math.PI/2)
.rotateZ(rx)
.rotateX(ry)
.load();
gl.drawArrays(gl.TRIANGLES, 0, numElements);
};
let numElements = 0;
const start = () => {
numElements = decode();
run();
};
requestAnimationFrame(start);
}
body, html {
touch-action: none;
content-zooming: none;
position: absolute;
margin: 0;
padding: 0;
width: 100%;
height: 100%;
overflow: hidden;
}
canvas {
position: absolute;
display: block;
width: 100%;
height: 100%;
background:#000;
cursor: crosshair;
}
img {visibility: hidden;}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment