Created
June 15, 2016 16:04
-
-
Save seanjtaylor/b7441ee2071ae37c4306b9af6ef8e365 to your computer and use it in GitHub Desktop.
Quick analysis of NFL Officials
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(rvest) | |
library(stringr) | |
library(readr) | |
library(ggplot2) | |
library(dplyr) | |
library(tidyr) | |
library(broom) | |
library(lubridate) | |
base.url <- 'http://www.pro-football-reference.com/' | |
officials.url <- 'http://www.pro-football-reference.com/officials/' | |
official_urls <- read_html(officials.url) %>% | |
html_nodes('table a') %>% | |
html_attr('href') | |
official_names <- read_html(officials.url) %>% | |
html_nodes('table a') %>% | |
html_text() | |
officials <- data_frame(name = official_names, url = official_urls) | |
all.data <- officials %>% | |
group_by(name, url) %>% do({ | |
url <- paste(base.url, .$url, sep = '') | |
doc <- read_html(url) | |
off.data <- doc %>% | |
html_nodes('table#game_logs') %>% | |
html_table %>% | |
first %>% | |
filter(VPen != 'VPen') %>% | |
group_by(Year, Game, Position) %>% do({ | |
vals <- str_split(.$Game, ' @ ')[[1]] | |
data_frame(home = str_replace(vals[2], '\\*', ''), | |
away = str_replace(vals[1], '\\*', ''), | |
hpts = as.numeric(.$HPts), | |
vpts = as.numeric(.$VPts), | |
hpen = as.numeric(.$HPen), | |
vpen = as.numeric(.$VPen), | |
hpenyards = as.numeric(.$HPYds), | |
vpenyards = as.numeric(.$VPYds)) | |
}) %>% | |
ungroup | |
}) %>% | |
ungroup | |
all.data %>% write_csv('officials_data.csv') | |
################################################################################ | |
## After scraping has been done once. | |
all.data <- read_csv('officials_data.csv') | |
home <- all.data %>% | |
mutate(win = as.numeric(hpts > vpts)) %>% | |
select(date = Year, name, team = home, pens = hpen, yds = hpenyards, win) %>% | |
mutate(home = 1) | |
away <- all.data %>% | |
mutate(win = as.numeric(vpts > hpts)) %>% | |
select(date = Year, name, team = away, pens = vpen, yds = vpenyards, win) %>% | |
mutate(home = 0) | |
long.data <- home %>% bind_rows(away) | |
## Some sanity checks. Who are the top officials? | |
all.data %>% | |
group_by(name) %>% | |
summarise(n = n()) %>% | |
arrange(-n) | |
## How many games per team? | |
long.data %>% | |
group_by(team) %>% | |
summarise(n = length(unique(date))) %>% | |
arrange(-n) | |
## Convert to wide format so we have one column per official | |
## So we can make indicator variables. | |
wide <- long.data %>% | |
mutate(seas = year(date - 180), ## cheap hack to get "season" | |
present = 1) %>% | |
spread(name, present, 0) | |
## officials.mat has one row per game, one column per official | |
officials.mat <- as.matrix(wide[,8:ncol(wide)]) | |
## team.mat has one row per game, one column per (team, season) | |
team.mat <- model.matrix( ~ 0 + team:factor(seas), wide) | |
## Regression with penalties ~ team + all officials involved | |
m <- lm(wide$pens ~ wide$home + team.mat + officials.mat) | |
## Count games per official so we can use this as a filter in the plot below. | |
official.rollup <- long.data %>% | |
group_by(name) %>% | |
summarise(n.games = n()/ 2) | |
tidy(m) %>% | |
mutate(official = str_match(term, 'officials\\.mat(.*)')[,2]) %>% | |
filter(!is.na(official)) %>% | |
inner_join(official.rollup, by = c('official' = 'name')) %>% | |
filter(n.games >= 250) %>% | |
ggplot(aes(x = reorder(official, estimate), y = estimate, | |
ymin = estimate - 1.96 * std.error, | |
ymax = estimate + 1.96 * std.error)) + | |
geom_pointrange() + | |
coord_flip() + | |
ylab('Team-Adjusted Extra Penalties per Game') + | |
xlab('Official Name') + | |
geom_hline(yintercept = 0.0, linetype = 'dashed') + | |
theme_bw() | |
## Teams plots! | |
tidy(m) %>% | |
mutate(team = str_match(term, 'team\\.matteam(.*):factor\\(seas\\)(.*)')[,2], | |
seas = str_match(term, 'team\\.matteam(.*):factor\\(seas\\)(.*)')[,3]) %>% | |
filter(!is.na(team), seas == 2015) %>% | |
ggplot(aes(x = reorder(team, estimate), y = estimate, | |
ymin = estimate - 1.96 * std.error, | |
ymax = estimate + 1.96 * std.error)) + | |
geom_pointrange() + | |
coord_flip() + | |
ylab('Official-Adjusted Net Penalties per Game') + | |
xlab('Team') + | |
geom_hline(yintercept = 0.0, linetype = 'dashed') + | |
theme_bw() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment