Created
July 19, 2017 14:17
-
-
Save seantalts/0eddfae6422bce47a4083d7d19dc5cb7 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
data { | |
int<lower=0> N; // num individuals | |
int<lower=1> K; // num ind predictors | |
int<lower=1> J; // num groups | |
int<lower=1> L; // num group predictors | |
int<lower=1,upper=J> jj[N]; // group for individual | |
} | |
generated quantities { | |
matrix[K, J] z; | |
cholesky_factor_corr[K] L_Omega; | |
matrix[K, K] Omega; // prior correlation | |
vector<lower=0>[K] tau; // prior scale | |
matrix[L, K] gamma; // group coeffs | |
matrix[J, K] beta; // indiv coeffs by group | |
real<lower=0> sigma; // prediction error scale | |
matrix[N, K] x; // individual predictors | |
matrix[J, L] u; // group predictors | |
vector[N] y; // outcomes | |
L_Omega = lkj_corr_cholesky_rng(K, 2.0); | |
for (k in 1:K) { | |
tau[k] = fabs(normal_rng(0, 5)); | |
for (j in 1:J) | |
z[k, j] = normal_rng(0, 1); | |
} | |
Omega = L_Omega * L_Omega; | |
for (i in 1:L) | |
for (j in 1:K) | |
gamma[i, j] = normal_rng(0, 5); | |
sigma = fabs(cauchy_rng(0, 2.5)); | |
for (n in 1:N) | |
for (k in 1:K) | |
x[n, k] = normal_rng(0, 10); | |
for (j in 1:J) | |
for (l in 1:L) | |
u[j, l] = normal_rng(0, 5); | |
beta = u * gamma + (diag_pre_multiply(tau, L_Omega) * z)'; | |
for (n in 1:N) | |
y[n] = normal_rng(dot_product(beta[jj[n]], x[n]), sigma); | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment