Last active
August 29, 2015 14:00
-
-
Save sebastiaanvisser/11343130 to your computer and use it in GitHub Desktop.
Generic Label datatype. Generalizes Point by adding a separate context for modification, allowing for things like traversals. Additionally, removed the categories and replaced them with monads instead.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{- | The Label data type which generalizes the different lenses. -} | |
{-# LANGUAGE GADTs, FlexibleInstances #-} | |
module Data.Label.Label | |
( | |
-- * The point data type that generalizes lens. | |
Label | |
, get | |
, modify | |
, set | |
, (>-) | |
-- * Working with isomorphisms. | |
, Iso (..) | |
, inv | |
) | |
where | |
import Prelude hiding ((.), id) | |
import Control.Applicative | |
import Control.Category | |
import Control.Monad hiding (mapM) | |
{-# INLINE get #-} | |
{-# INLINE modify #-} | |
{-# INLINE set #-} | |
{-# INLINE inv #-} | |
------------------------------------------------------------------------------- | |
-- | Abstract Label datatype. The getter and modifier operations work in some | |
-- monad. The type of the value pointed to might change, thereby changing the | |
-- type of the outer structure. | |
data Label m n f o where | |
Ops :: !(f -> m o) | |
-> !((o -> n i) -> f -> n g) | |
-> Label m n (f -> g) (o -> i) | |
Id :: Label m n f f | |
instance Monad m => Category (Label m n) where | |
id = Id | |
Ops a b . Ops c d = Ops (a <=< c) (d . b) | |
Id . u = u | |
u . Id = u | |
{-# INLINE id #-} | |
{-# INLINE (.) #-} | |
get :: Monad m => Label m n (f -> g) (o -> i) -> f -> m o | |
get (Ops g _) = g | |
get Id = return | |
modify :: Monad n => Label m n (f -> g) (o -> i) -> (o -> n i) -> f -> n g | |
modify (Ops _ m) = m | |
modify Id = id | |
set :: Monad n => Label m n (f -> g) (o -> i) -> n i -> f -> n g | |
set l = modify l . const | |
------------------------------------------------------------------------------- | |
-- Applicative composition. | |
infix 7 >- | |
(>-) :: Monad m | |
=> Label m m (j -> a) (i -> b) | |
-> Label m m (f -> g) (o -> i) | |
-> Open m f g j o | |
(>-) (Ops f _) (Ops g m) = Open $ Ops g (\n -> m (f <=< n)) | |
(>-) (Ops f _) Id = Open $ Ops return (f <=<) | |
(>-) Id l = Open l | |
newtype Open m f g i o = Open (Label m m (f -> g) (o -> i)) | |
instance Monad m => Functor (Open m f f i) where | |
fmap f x = pure f <*> x | |
{-# INLINE fmap #-} | |
instance Monad m => Applicative (Open m f f i) where | |
pure a = Open $ Ops (const (return a)) (const return) | |
Open a <*> Open b = Open $ Ops | |
(liftM2 ap (get a) (get b)) | |
(\m f -> modify b (\y -> get a f >>= m . ($ y)) | |
=<< modify a (\x -> get b f >>= m . (x $)) f | |
) | |
{-# INLINE pure #-} | |
{-# INLINE (<*>) #-} | |
instance MonadPlus m => Alternative (Open m f f i) where | |
empty = Open $ Ops (const mzero) (const (const mzero)) | |
Open a <|> Open b = Open $ Ops (liftM2 mplus (get a) (get b)) | |
(\m -> liftM2 mplus (modify a m) (modify b m)) | |
------------------------------------------------------------------------------- | |
-- | Affectful isomorphisms. | |
infix 8 `Iso` | |
-- | An isomorphism is like a `Category` that works in two directions. | |
data Iso m n i o = Iso { fw :: i -> m o, bw :: o -> n i } | |
-- | Isomorphisms are categories. | |
instance (Monad m, Monad n) => Category (Iso m n) where | |
id = Iso return return | |
Iso a b . Iso c d = Iso (a <=< c) (d <=< b) | |
{-# INLINE id #-} | |
{-# INLINE (.) #-} | |
-- | Flip an isomorphism. | |
inv :: Iso m n i o -> Iso n m o i | |
inv i = Iso (bw i) (fw i) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment