Last active
December 6, 2020 11:30
-
-
Save sebastianrothbucher/d53a4671f602d864c5c69bad6c2746ca to your computer and use it in GitHub Desktop.
Explaining nnet with LIME (and SHAP)
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(lime) | |
library(datasets) | |
library(nnet) | |
library(caret) | |
#View(iris) | |
train_index <- sample(1:nrow(iris), 0.8 * nrow(iris)) | |
test_index <- setdiff(1:nrow(iris), train_index) | |
iris_net <- nnet(Species~., data = iris[train_index,], size = 20) | |
test_pred <- predict(iris_net, iris[test_index, c(1:4)], type = 'class') | |
test_conf <- confusionMatrix(factor(test_pred), iris$Species[test_index], mode = 'prec_recall') | |
#View(test_conf$byClass[,'F1']) | |
print(mean(test_conf$byClass[,'F1'])) | |
model_type.nnet <- function(x, ...) 'classification' | |
predict_model.nnet <- function(x, newdata, type, ...) { | |
#print(type) | |
res <- predict(x, newdata, type = 'raw'); | |
#print(res[1,]) | |
data.frame(Response = res, stringsAsFactors = FALSE) | |
} | |
iris_expln <- lime(iris[train_index,], iris_net) | |
iris_lime <- lime::explain(iris[test_index[c(1:4)], c(1:4)], iris_expln, n_labels = 1, n_features = 4) | |
#View(iris_lime) | |
print(iris$Species[test_index[c(1:4)]]) | |
plot_features(iris_lime) | |
# also SHAP (test_pred[3]: ) | |
library(iml) | |
iris_shappred <- Predictor$new(data = iris[test_index, c(1:4)], model = iris_net) | |
iris_shap <- Shapley$new(iris_shappred, x.interest = iris[test_index[3], c(1:4)]) | |
print(iris$Species[test_index[3]]) | |
iris_shap$plot() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment