Last active
January 29, 2025 11:08
-
-
Save sebjai/e5cdaf69a60976889e970039fba9d866 to your computer and use it in GitHub Desktop.
Optimal execution with a percentage of volume target (Chap 9.2 of Algorithmic and High-Frequency Trading (c) Cartea, Jaimungal, & Penalva 2015 Cambridge University Press)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import time\n", | |
"import math\n", | |
"import numpy as np\n", | |
"import matplotlib.pyplot as plt\n", | |
"with __import__('importnb').Notebook(): \n", | |
" import TargetRate_MarketSpeed_Helper\n", | |
"from scipy import interpolate\n", | |
"np.random.seed(30)\n", | |
"np.seterr(divide='ignore', invalid='ignore')\n", | |
"font = {'family': 'serif',\n", | |
" 'style': 'italic',\n", | |
" # 'color': 'darkred',\n", | |
" 'weight': 1,\n", | |
" 'size': 16,\n", | |
" }" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 10, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"# Plot Path Map with respective to Time\n", | |
"def PlotPath(t, T, Y, idxfig, title, lw=0.5, midline=None):\n", | |
" fig_1 = plt.figure()\n", | |
" plt.tick_params(direction='in', bottom=True, top=True, left=True, right=True)\n", | |
" axes = fig_1.gca()\n", | |
" axes.set_xlim([0, T])\n", | |
" axes.set_ylim([np.nanmin(Y[idxfig]), np.nanmax(Y[idxfig])*1.1])\n", | |
"\n", | |
" for i in range(len(idxfig)):\n", | |
" plt.plot(t, Y[idxfig[i]], linewidth=lw, label=i+1)\n", | |
" \n", | |
" if midline!=None:\n", | |
" plt.plot(t, midline[1], '--k' )\n", | |
"\n", | |
" plt.ylabel(title, fontdict=font)\n", | |
" plt.xlabel('Time ($t$) ', fontdict=font)\n", | |
" plt.legend()\n", | |
" plt.show()\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 11, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"# Plot Frequency Map \n", | |
"def PlotHist(X, xlabel, bins=50, percentiles=[0.01, 0.1, 0.5, 0.9, 0.99]):\n", | |
" # Visualizing price difference between strategies \n", | |
" fig_7 = plt.figure()\n", | |
" plt.tick_params(direction='in', bottom=True, top=True, left=True, right=True)\n", | |
"\n", | |
" n, b, p = plt.hist(X, bins)\n", | |
"\n", | |
" q = np.quantile(X, percentiles)\n", | |
" maxHeight = 1.1*np.max(n)\n", | |
" for i in range(len(q)):\n", | |
" plt.plot(q[i]*np.array([1,1]), np.array([0,maxHeight]), '--', label= percentiles[i])\n", | |
"\n", | |
" plt.ylabel('Frequency', fontdict=font)\n", | |
" plt.xlabel(xlabel, fontdict=font)\n", | |
" plt.ylim((0,maxHeight))\n", | |
" plt.legend(('qtl=0.01','qtl=0.10','qtl=0.50','qtl=0.90','qtl=0.99'))\n", | |
" plt.show()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 12, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"# Plot Heat/Density Map\n", | |
"def MakeHeatMap(t, y, xlabel, ylabel, fignum=False, nct=20, Nbins=100, Ndt=200, lower_threshold=0.1, upper_threshold=0.48):\n", | |
"\n", | |
" miny = np.nanmin(y)\n", | |
" maxy = np.nanmax(y)\n", | |
" dy = (maxy - miny) / Nbins\n", | |
" bins = np.linspace(miny, maxy, 100)\n", | |
"\n", | |
"\n", | |
" yr = np.full([Ndt, len(bins)], np.nan)\n", | |
"\n", | |
" mydt = (t[-1] - t[0]) / (Ndt - 1)\n", | |
"\n", | |
" tr = np.full([Ndt, ], np.nan)\n", | |
"\n", | |
" for i in range(Ndt):\n", | |
" kk = np.where(t < t[0] + mydt * (i + 1))[-1][-1]\n", | |
" count = np.histogram(y[:, kk], np.arange(miny, maxy + 0.00001, dy))\n", | |
" yr[i, :] = count[0]\n", | |
" tr[i] = t[kk].item()\n", | |
"\n", | |
" zr = yr.T / len(y[:, 0])\n", | |
"\n", | |
" if not fignum:\n", | |
" fig = plt.figure()\n", | |
" else:\n", | |
" fig = plt.figure(fignum)\n", | |
" \n", | |
" plt.tick_params(direction='in', bottom=True, top=True, left=True, right=True)\n", | |
" axes = fig.gca()\n", | |
" axes.set_xlim(left=0)\n", | |
" axes.set_ylim(bottom=0, top=np.max(maxy))\n", | |
" x_cord_i, y_cord_i = np.meshgrid(tr, bins)\n", | |
" zr[zr < np.max(zr)*lower_threshold] = 0\n", | |
" zr[zr > np.max(zr)*upper_threshold] = np.max(zr)*upper_threshold\n", | |
" cmap = plt.get_cmap('YlOrRd')\n", | |
"\n", | |
" plt.contour(x_cord_i, y_cord_i, zr, nct, cmap=cmap, levels=np.linspace(zr.min(), zr.max(), 1000))\n", | |
"\n", | |
" lim = np.around(np.max(zr), int(np.around(-(np.log(0.10972799999999999)/np.log(10)))))\n", | |
" plt.colorbar(ticks=np.arange(0, np.max(zr), lim/10))\n", | |
"\n", | |
" y_1 = np.quantile(y, 0.05, axis=0)\n", | |
" y_2 = np.quantile(y, 0.5, axis=0)\n", | |
" y_3 = np.quantile(y, 0.95, axis=0)\n", | |
"\n", | |
" plt.plot(t, y_1, '--k', linewidth=2)\n", | |
" plt.plot(t, y_2, '--k', linewidth=2)\n", | |
" plt.plot(t, y_3, '--k', linewidth=2)\n", | |
"\n", | |
" plt.xlabel(xlabel)\n", | |
" plt.ylabel(ylabel)\n" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.7.3" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment