Created
August 12, 2024 21:36
-
-
Save sebmellen/afec27c74ef24e5ff559fc81532c9394 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
<!DOCTYPE html> | |
<html lang="en"> | |
<head> | |
<meta charset="UTF-8"> | |
<meta name="viewport" content="width=device-width, initial-scale=1.0"> | |
<title>Text Blur Detection</title> | |
<style> | |
body { font-family: Arial, sans-serif; line-height: 1.6; padding: 20px; max-width: 800px; margin: 0 auto; } | |
.container { display: flex; flex-direction: column; align-items: center; } | |
#originalCanvas { max-width: 100%; height: auto; border: 1px solid #ddd; margin-top: 20px; display: none; } | |
</style> | |
</head> | |
<body> | |
<h1>Text Blur Detection</h1> | |
<input type="file" id="imageInput" accept="image/*"> | |
<div class="container"> | |
<canvas id="originalCanvas"></canvas> | |
<img id="resizedImage" alt="Resized Image"> | |
</div> | |
<div id="result"></div> | |
<script type="module"> | |
// blurDetection.js | |
/** | |
* Detects blur in an image. | |
* @param {Uint8ClampedArray} imageData - The image data in RGBA format. | |
* @param {number} width - The width of the image. | |
* @param {number} height - The height of the image. | |
* @param {number} [blockSize=32] - The size of the blocks to divide the image into for variance calculation. | |
* @param {number} [blurThreshold=0.5] - The threshold from 0 to 1 to determine if the image is blurred. | |
* @returns {{clarityScore: number, isBlurred: boolean, rawClarityScore: number}} The blur detection result. | |
* @throws Will throw an error if the input is invalid. | |
*/ | |
export function detectBlur(imageData, width, height, blockSize = 32, blurThreshold = 0.5) { | |
// Validate inputs | |
if (!(imageData instanceof Uint8ClampedArray)) { | |
throw new Error('Invalid imageData: expected Uint8ClampedArray.'); | |
} | |
if (typeof width !== 'number' || width <= 0) { | |
throw new Error('Invalid width: expected a positive number.'); | |
} | |
if (typeof height !== 'number' || height <= 0) { | |
throw new Error('Invalid height: expected a positive number.'); | |
} | |
if (typeof blockSize !== 'number' || blockSize <= 0) { | |
throw new Error('Invalid blockSize: expected a positive number.'); | |
} | |
if (typeof blurThreshold !== 'number' || blurThreshold < 0 || blurThreshold > 1) { | |
throw new Error('Invalid blurThreshold: expected a number between 0 and 1.'); | |
} | |
try { | |
const grayscale = convertToGrayscale(imageData, width, height); | |
const laplacian = applyLaplacian(grayscale, width, height); | |
const rawClarityScore = calculateBlockVariance(laplacian, width, height, blockSize); | |
const clarityScore = logAdjustVariance(rawClarityScore, width, height); | |
return { | |
clarityScore: clarityScore, | |
isBlurred: clarityScore < blurThreshold, | |
rawClarityScore: rawClarityScore | |
}; | |
} catch (error) { | |
throw new Error(`Error detecting blur: ${error.message}`); | |
} | |
} | |
/** | |
* Converts image data to grayscale. | |
* @param {Uint8ClampedArray} imageData - The image data in RGBA format. | |
* @param {number} width - The width of the image. | |
* @param {number} height - The height of the image. | |
* @returns {Uint8Array} The grayscale image data. | |
* @throws Will throw an error if the conversion fails. | |
*/ | |
function convertToGrayscale(imageData, width, height) { | |
try { | |
const grayscale = new Uint8Array(width * height); | |
for (let i = 0; i < width * height; i++) { | |
const idx = i * 4; | |
grayscale[i] = (imageData[idx] * 0.299 + imageData[idx + 1] * 0.587 + imageData[idx + 2] * 0.114); | |
} | |
return grayscale; | |
} catch (error) { | |
throw new Error('Failed to convert image to grayscale.'); | |
} | |
} | |
/** | |
* Applies a Laplacian filter to the grayscale image data. | |
* @param {Uint8Array} grayscale - The grayscale image data. | |
* @param {number} width - The width of the image. | |
* @param {number} height - The height of the image. | |
* @returns {Float32Array} The Laplacian filtered image data. | |
* @throws Will throw an error if the Laplacian filter application fails. | |
*/ | |
function applyLaplacian(grayscale, width, height) { | |
try { | |
const laplacian = new Float32Array(width * height); | |
const kernel = [ | |
0, 1, 0, | |
1, -4, 1, | |
0, 1, 0 | |
]; | |
for (let y = 1; y < height - 1; y++) { | |
for (let x = 1; x < width - 1; x++) { | |
const idx = y * width + x; | |
let sum = 0; | |
for (let ky = -1; ky <= 1; ky++) { | |
for (let kx = -1; kx <= 1; kx++) { | |
const kidx = (ky + 1) * 3 + (kx + 1); | |
const pidx = (y + ky) * width + (x + kx); | |
sum += grayscale[pidx] * kernel[kidx]; | |
} | |
} | |
laplacian[idx] = sum; | |
} | |
} | |
return laplacian; | |
} catch (error) { | |
throw new Error('Failed to apply Laplacian filter.'); | |
} | |
} | |
/** | |
* Calculates the variance of the Laplacian filtered image data for each block. | |
* @param {Float32Array} data - The Laplacian filtered image data. | |
* @param {number} width - The width of the image. | |
* @param {number} height - The height of the image. | |
* @param {number} blockSize - The size of the blocks to divide the image into for variance calculation. | |
* @returns {number} The weighted average variance of the blocks. | |
* @throws Will throw an error if the variance calculation fails. | |
*/ | |
function calculateBlockVariance(data, width, height, blockSize) { | |
try { | |
let totalVariance = 0; | |
let totalWeight = 0; | |
const centerX = width / 2; | |
const centerY = height / 2; | |
const maxDistance = Math.sqrt(centerX * centerX + centerY * centerY); | |
for (let y = 0; y < height; y += blockSize) { | |
for (let x = 0; x < width; x += blockSize) { | |
const blockVariance = calculateVariance(data, width, height, x, y, blockSize); | |
const blockCenterX = x + blockSize / 2; | |
const blockCenterY = y + blockSize / 2; | |
const distanceFromCenter = Math.sqrt((blockCenterX - centerX) ** 2 + (blockCenterY - centerY) ** 2); | |
const weight = 1 - (distanceFromCenter / maxDistance); | |
totalVariance += blockVariance * weight; | |
totalWeight += weight; | |
} | |
} | |
return totalVariance / totalWeight; | |
} catch (error) { | |
throw new Error('Failed to calculate block variance.'); | |
} | |
} | |
/** | |
* Calculates the variance of a block in the image data. | |
* @param {Float32Array} data - The Laplacian filtered image data. | |
* @param {number} width - The width of the image. | |
* @param {number} height - The height of the image. | |
* @param {number} startX - The starting X coordinate of the block. | |
* @param {number} startY - The starting Y coordinate of the block. | |
* @param {number} blockSize - The size of the block. | |
* @returns {number} The variance of the block. | |
* @throws Will throw an error if the block variance calculation fails. | |
*/ | |
function calculateVariance(data, width, height, startX, startY, blockSize) { | |
try { | |
let sum = 0, sumSq = 0, count = 0; | |
for (let y = startY; y < startY + blockSize && y < height; y++) { | |
for (let x = startX; x < startX + blockSize && x < width; x++) { | |
const idx = y * width + x; | |
sum += data[idx]; | |
sumSq += data[idx] * data[idx]; | |
count++; | |
} | |
} | |
const mean = sum / count; | |
return sumSq / count - mean * mean; | |
} catch (error) { | |
throw new Error('Failed to calculate variance.'); | |
} | |
} | |
/** | |
* Adjusts the variance to a score between 0 and 1 based on a logistic function. | |
* @param {number} variance - The raw variance. | |
* @returns {number} The adjusted clarity score between 0 and 1. | |
* @throws Will throw an error if the adjustment fails. | |
*/ | |
function logAdjustVariance(variance) { | |
try { | |
// Parameters for the logistic function to control the curve | |
const k = 0.02; // Steepness of the curve | |
const x0 = 100; // Midpoint of the curve (where the output is 0.5) | |
// Logistic function to map variance to a clarity score between 0 and 1 | |
const clarityScore = 1 / (1 + Math.exp(-k * (variance - x0))); | |
return clarityScore; | |
} catch (error) { | |
throw new Error("Failed to adjust variance using the logistic function."); | |
} | |
} | |
document.getElementById('imageInput').addEventListener('change', async function(e) { | |
const file = e.target.files[0]; | |
if (file) { | |
const reader = new FileReader(); | |
reader.onload = function(e) { | |
const img = new Image(); | |
img.onload = async function() { | |
const canvas = document.getElementById('originalCanvas'); | |
canvas.width = img.width; | |
canvas.height = img.height; | |
const ctx = canvas.getContext('2d'); | |
ctx.drawImage(img, 0, 0); | |
const imageData = ctx.getImageData(0, 0, img.width, img.height); | |
try { | |
console.log(Date.now()) | |
const blurResult = detectBlur(imageData.data, img.width, img.height, 32, 0.5); | |
console.log(Date.now()) | |
document.getElementById('result').innerHTML = ` | |
<h3>Blur Detection Result</h3> | |
<p>Clarity Score: ${blurResult.clarityScore.toFixed(2)}</p> | |
<p>Raw Clarity Score: ${blurResult.rawClarityScore.toFixed(2)}</p> | |
<p>Is Blurred: ${blurResult.isBlurred ? 'Yes' : 'No'}</p> | |
<p>Note: Higher scores indicate sharper images, while lower scores indicate blur.</p> | |
`; | |
} catch (error) { | |
document.getElementById('result').innerHTML = ` | |
<h3>Error</h3> | |
<p>${error.message}</p> | |
`; | |
} | |
}; | |
img.src = e.target.result; | |
}; | |
reader.readAsDataURL(file); | |
} | |
}); | |
</script> | |
</body> | |
</html> |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment