Skip to content

Instantly share code, notes, and snippets.

@secdev02
Forked from Nikolaj-K/priv_to_pub.py
Created February 2, 2025 18:37
Show Gist options
  • Save secdev02/8dab3aa9a4fa4e8220fba4ca3dbf3bc6 to your computer and use it in GitHub Desktop.
Save secdev02/8dab3aa9a4fa4e8220fba4ca3dbf3bc6 to your computer and use it in GitHub Desktop.
priv-key to pub-key on the Bitcoin elliptic curve
"""
Bitcoin elliptic curve pub-key from priv-key in raw python, as dicusssed in the video
https://youtu.be/RZzB-vPFYmo
This is a follow-up to the previous video
https://youtu.be/LYN3h5DjeXw
This script is directly based off
https://github.com/peterscott78/offline_signer/blob/master/ecdsa_keys.py
See also
https://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication
I'll keep this short, so for other peoples videos on elliptic curve's, see
https://www.youtube.com/results?search_query=Secp256k1
For the curve tested, see
https://en.bitcoin.it/wiki/Secp256k1
Don't write me emails asking how to install python or something of the sort.
If you ask me something, use an adult sentence structure and attire.
Disclaimer: Due to potential bugs, don't use functions from this script for anything of value!
Don't use this script for anything of value - I've tinkered around
with it a lot and it might be buggy in various places.
Instead, e.g. use the 'ecdsa' python python library that I also use for some
validation checks here at the end of this script.
"""
def inverse_mod(a, m):
"""
Returns and x with (a * x) % m == 1
See
https://en.wikipedia.org/wiki/Modular_multiplicative_inverse
"""
if a < 0 or m <= a:
a = a % m
c, d = a, m
uc, vc, ud, vd = 1, 0, 0, 1
while c:
q, c, d = divmod(d, c) + (c, )
uc, vc, ud, vd = ud - q * uc, vd - q * vc, uc, vc
assert d == 1
x = ud if ud > 0 else ud + m
assert (a * x) % m == 1
return x
class Point(object):
def __init__(self, curve, x, y, order):
"""
The parameter curve is a dict with keys 'a', 'b' and 'p' capturing
y^3 == x^2 + a * x + b over F_p.
See also the sanity checks below.
"""
self.__curve = curve
self.__x = x
self.__y = y
self.order = order
# Sanity checks
if order:
assert self.scalar_mult(order) == _INFINITY
if self.__curve:
# Validate that the point (x, y) is on the curve
y2 = y * y
x3 = x * x * x
ax = curve['a'] * x
d = y2 - (x3 + ax + curve['b'])
assert d % curve['p'] == 0
def get_coords(self):
return self.__x, self.__y
def scalar_mult(self, e):
"""
From the 'eliptic curve mutliplication Wikipedia page',
"Elliptic curve scalar multiplication is the operation of successively
adding a point along an elliptic curve to itself repeatedly"
"""
if self.order:
e = e % self.order
if e == 0 or self == _INFINITY:
return _INFINITY
assert e > 0
e3 = 3 * e
# Compute leftmost bit index
j = 1
while j <= e3:
j *= 2
i = j // 4
# Do the math
point = self
while i > 1:
point = point.__double()
u = e & i # Note: Using bitwise and on the binary expressions of those numbers
u3 = e3 & i
if u3 and not u:
point = point.__add(self)
if u and not u3:
self_y_flipped = Point(self.__curve, self.__x, -self.__y, self.order)
point = point.__add(self_y_flipped)
i = i // 2
return point
def __add(self, other):
"""
For a visual motivation of addition, see e.g. the graphs on
the 'eliptic curve mutliplication Wikipedia page'.
"""
# Simple cases
if other == _INFINITY:
return self
if self == _INFINITY:
return other
assert self.__curve == other.__curve
# Auxiliary abbreviations
x = self.__x
ox = other.__x
y = self.__y
oy = other.__y
# Another simple case
if x == ox:
return _INFINITY if (y + oy) % self.__curve['p'] == 0 else self.__double()
# Do the math
p = self.__curve['p']
im = inverse_mod(ox - x, p)
l = ((oy - y) * im) % p
x3 = (l * l - x - ox) % p
y3 = (l * (x - x3) - y) % p
return Point(self.__curve, x3, y3, None)
def __double(self):
if self == _INFINITY:
return _INFINITY
# Auxiliary abbreviations
p = self.__curve['p']
x = self.__x
y = self.__y
# Do the math
im = inverse_mod(2 * y, p)
l = (3 * x * x + self.__curve['a']) * im
l = l % p
x3 = l * l - 2 * x
x3 = x3 % p
y3 = l * (x - x3) - y
y3 = y3 % p
return Point(self.__curve, x3, y3, None)
_INFINITY = Point(None, None, None, None)
if __name__ == "__main__":
"""
Validate custom eliptic curve point implementation
using the Bitcoin curve and base point (Secp256k1)
by using the ecdsa python library.
"""
BTC_CURVE = dict(a=0, b=7, p=0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F) # a, b, modulus
Secp256k1 = Point(
BTC_CURVE,
0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798, # x_G
0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8, # y_G
0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 # order
)
def is_matching_keys(secret, public_point_coords):
import ecdsa
import binascii
sk = ecdsa.SigningKey.from_secret_exponent(secret, curve=ecdsa.SECP256k1) # Uses Secp256k1!
pubk = binascii.b2a_hex(sk.verifying_key.to_string()).decode('ascii')
# Convert 'public_point_coords' to the same format
def cast_to_hex(coordinate):
LEN = 64 # 2**6 hex chars
hex_string = hex(coordinate)[2:] # convert to hex but drop "0x"
prefix_zeros = "0" * (LEN - len(hex_string))
return prefix_zeros + hex_string
pubk_x, pubk_y = map(cast_to_hex, public_point_coords)
success = pubk_x == pubk[:64] and pubk_y == pubk[64:]
return success
# Validate the eliptic curve point class for the private keys (SECRETS).
SECRETS = [1, 2, 3, 9, 10**50, Secp256k1.order - 1]
for secret in SECRETS:
public_point = Secp256k1.scalar_mult(secret)
assert is_matching_keys(secret, public_point.get_coords())
print(f"✅ Validated module for secret={secret}")
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment