Created
January 22, 2024 16:56
-
-
Save secemp9/ddb409c5e589a91afc6fcd852ea30356 to your computer and use it in GitHub Desktop.
hungarian algorithm for the assignment problem (using numpy)
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import numpy as np | |
| def hungarian_algorithm(cost_matrix): | |
| N = len(cost_matrix) | |
| max_cost = np.max(cost_matrix) | |
| cost_matrix = max_cost - cost_matrix # Convert to a profit matrix | |
| # Step 1: Subtract the row minimum from each row | |
| for i in range(N): | |
| cost_matrix[i] -= np.min(cost_matrix[i]) | |
| # Step 2: Subtract the column minimum from each column | |
| for j in range(N): | |
| cost_matrix[:, j] -= np.min(cost_matrix[:, j]) | |
| # Step 3: Cover all zeros with a minimum number of lines | |
| while True: | |
| covered_rows, covered_cols = cover_zeros(cost_matrix) | |
| if len(covered_rows) + len(covered_cols) == N: | |
| break | |
| # Step 4: Create more zeros | |
| min_uncovered_value = np.min(cost_matrix[~np.isin(range(N), covered_rows), :][:, ~np.isin(range(N), covered_cols)]) | |
| cost_matrix[~np.isin(range(N), covered_rows), :] -= min_uncovered_value | |
| cost_matrix[:, covered_cols] += min_uncovered_value | |
| # Step 5: Find an optimal assignment | |
| assignment = np.zeros_like(cost_matrix, dtype=int) | |
| for _ in range(N): | |
| row, col = np.where((cost_matrix == 0) & (assignment == 0)) | |
| for i, j in zip(row, col): | |
| if np.sum(assignment[i, :]) == 0 and np.sum(assignment[:, j]) == 0: | |
| assignment[i, j] = 1 | |
| cost_matrix[i, :] = -1 # To avoid choosing the same row again | |
| cost_matrix[:, j] = -1 # To avoid choosing the same column again | |
| break | |
| return assignment * (max_cost - cost_matrix) | |
| def cover_zeros(matrix): | |
| N = len(matrix) | |
| covered_rows = set() | |
| covered_cols = set() | |
| zeros = np.argwhere(matrix == 0) | |
| while zeros.size > 0: | |
| # Count zeros in rows and columns | |
| zero_count_row = np.array([np.sum(zeros[:, 0] == r) for r in range(N)]) | |
| zero_count_col = np.array([np.sum(zeros[:, 1] == c) for c in range(N)]) | |
| # Find row or column with the maximum number of uncovered zeros | |
| if np.max(zero_count_row) > np.max(zero_count_col): | |
| row = np.argmax(zero_count_row) | |
| covered_rows.add(row) | |
| zeros = zeros[zeros[:, 0] != row] | |
| else: | |
| col = np.argmax(zero_count_col) | |
| covered_cols.add(col) | |
| zeros = zeros[zeros[:, 1] != col] | |
| return covered_rows, covered_cols | |
| # Example Usage | |
| cost_matrix = np.array([[4, 2, 3], [2, 5, 1], [3, 4, 2]]) | |
| assignment = hungarian_algorithm(cost_matrix) | |
| print("Original Cost Matrix:\n", cost_matrix) | |
| print("Assignment Matrix:\n", assignment) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment