Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save securetorobert/6e2db569d2d2be51fb54de9af3330379 to your computer and use it in GitHub Desktop.
Save securetorobert/6e2db569d2d2be51fb54de9af3330379 to your computer and use it in GitHub Desktop.
Evaluate a DNNClassifer on iris dataset
# Evaluate our model using the examples contained in FILE_TEST
# Return value will contain evaluation_metrics such as: loss & average_loss
evaluate_result = estimator.evaluate(
input_fn=lambda: my_input_fn(FILE_TEST, False, 4)
print("Evaluation results")
for key in evaluate_result:
print(" {}, was: {}".format(key, evaluate_result[key]))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment