Last active
September 16, 2024 22:13
-
-
Save seddonm1/5927db05cb7ad38d98a22674fa82a4c6 to your computer and use it in GitHub Desktop.
How to build onnxruntime on an aarch64 NVIDIA device (like Jetson Orin AGX)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
On an Orin NX 16G the memory was too low to compile and the SWAP file had to be increased. | |
/etc/systemd/nvzramconfig.sh | |
change: | |
``` | |
# Calculate memory to use for zram (1/2 of ram) | |
totalmem=`LC_ALL=C free | grep -e "^Mem:" | sed -e 's/^Mem: *//' -e 's/ *.*//'` | |
mem=$((("${totalmem}" / 2 / "${NRDEVICES}") * 1024)) | |
``` | |
to: | |
``` | |
# Calculate memory to use for zram (size of ram) | |
totalmem=`LC_ALL=C free | grep -e "^Mem:" | sed -e 's/^Mem: *//' -e 's/ *.*//'` | |
mem=$((("${totalmem}" / "${NRDEVICES}") * 1024)) | |
``` | |
docker run \ | |
--rm \ | |
-it \ | |
-e ONNXRUNTIME_REPO=https://github.com/microsoft/onnxruntime \ | |
-e ONNXRUNTIME_COMMIT=v1.17.0 \ | |
-e BUILD_CONFIG=Release \ | |
-e CMAKE_VERSION=3.28.3 \ | |
-e CPU_ARCHITECTURE=$(uname -m) \ | |
-v /usr/lib/aarch64-linux-gnu/tegra:/usr/lib/aarch64-linux-gnu/tegra:ro \ | |
-v $(pwd):/output \ | |
-w /tmp \ | |
nvcr.io/nvidia/deepstream:6.4-triton-multiarch \ | |
/bin/bash -c " | |
# set up cmake | |
apt remove -y cmake &&\ | |
rm -rf /usr/local/bin/cmake &&\ | |
apt update &&\ | |
apt install -y wget &&\ | |
rm -rf /tmp/cmake &&\ | |
mkdir /tmp/cmake &&\ | |
wget https://github.com/Kitware/CMake/releases/download/v\${CMAKE_VERSION}/cmake-\${CMAKE_VERSION}-linux-\${CPU_ARCHITECTURE}.tar.gz &&\ | |
tar zxf cmake-\${CMAKE_VERSION}-linux-\${CPU_ARCHITECTURE}.tar.gz --strip-components=1 -C /tmp/cmake &&\ | |
export PATH=\$PATH:/tmp/cmake/bin &&\ | |
# clone onnxruntime repository and build | |
apt-get install -y patch &&\ | |
git clone \${ONNXRUNTIME_REPO} onnxruntime &&\ | |
cd onnxruntime &&\ | |
git checkout \${ONNXRUNTIME_COMMIT} &&\ | |
/bin/sh build.sh \ | |
--parallel \ | |
--build_shared_lib \ | |
--allow_running_as_root \ | |
--compile_no_warning_as_error \ | |
--cuda_home /usr/local/cuda \ | |
--cudnn_home /usr/lib/\${CPU_ARCHITECTURE}-linux-gnu/ \ | |
--use_tensorrt \ | |
--tensorrt_home /usr/lib/\${CPU_ARCHITECTURE}-linux-gnu/ \ | |
--config \${BUILD_CONFIG} \ | |
--skip_tests \ | |
--cmake_extra_defines 'onnxruntime_BUILD_UNIT_TESTS=OFF' &&\ | |
# package and copy to output | |
export ONNXRUNTIME_VERSION=\$(cat /tmp/onnxruntime/VERSION_NUMBER) &&\ | |
rm -rf /tmp/onnxruntime/build/onnxruntime-linux-\${CPU_ARCHITECTURE}-gpu-\${ONNXRUNTIME_VERSION} &&\ | |
BINARY_DIR=build \ | |
ARTIFACT_NAME=onnxruntime-linux-\${CPU_ARCHITECTURE}-gpu-\${ONNXRUNTIME_VERSION} \ | |
LIB_NAME=libonnxruntime.so \ | |
BUILD_CONFIG=Linux/\${BUILD_CONFIG} \ | |
SOURCE_DIR=/tmp/onnxruntime \ | |
COMMIT_ID=\$(git rev-parse HEAD) \ | |
tools/ci_build/github/linux/copy_strip_binary.sh &&\ | |
cd /tmp/onnxruntime/build/onnxruntime-linux-\${CPU_ARCHITECTURE}-gpu-\${ONNXRUNTIME_VERSION}/lib/ &&\ | |
ln -s libonnxruntime.so libonnxruntime.so.\${ONNXRUNTIME_VERSION} &&\ | |
cp -r /tmp/onnxruntime/build/onnxruntime-linux-\${CPU_ARCHITECTURE}-gpu-\${ONNXRUNTIME_VERSION} /output | |
" |
@ykawa2, thank you for your assistance! I successfully built ONNXRuntime-gpu with TensorRT using ONNXRUNTIME_COMMIT=v1.14.1, and everything went smoothly. I obtained the wheel file and installed it on my system. However, I noticed that the first inference after loading the model takes a significant amount of time, but subsequent inferences perform well. Have you encountered similar performance issues?
@seddonm1 also if you could help here.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
@ykawa2, thank you for your assistance! I successfully built ONNXRuntime-gpu with TensorRT using ONNXRUNTIME_COMMIT=v1.14.1, and everything went smoothly. I obtained the wheel file and installed it on my system. However, I noticed that the first inference after loading the model takes a significant amount of time, but subsequent inferences perform well. Have you encountered similar performance issues?