Created
May 16, 2018 20:17
-
-
Save seibert/9c6e372b5a3189b2b927d10ce01e9c94 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os, sys | |
import numpy as np | |
from keras.datasets import mnist | |
from keras.models import Sequential | |
from keras.layers import Dense, Dropout, Activation, Flatten | |
from keras.layers import Conv2D, MaxPooling2D | |
from keras.utils import np_utils | |
from keras import backend as K | |
batch_size = 128 | |
nb_classes = 10 | |
nb_epoch = 5 | |
img_rows, img_cols = 28, 28 | |
nb_filters = 64 | |
pool_size = (2, 2) | |
kernel_size = (3, 3) | |
(X_train, y_train), (X_test, y_test) = mnist.load_data() | |
X_train = X_train[:1000] | |
y_train = y_train[:1000] | |
X_test = X_test[:1000] | |
y_test = y_test[:1000] | |
if K.image_dim_ordering() == 'th': | |
X_train = X_train.reshape(X_train.shape[0], 1, img_rows, img_cols) | |
X_test = X_test.reshape(X_test.shape[0], 1, img_rows, img_cols) | |
input_shape = (1, img_rows, img_cols) | |
else: | |
X_train = X_train.reshape(X_train.shape[0], img_rows, img_cols, 1) | |
X_test = X_test.reshape(X_test.shape[0], img_rows, img_cols, 1) | |
input_shape = (img_rows, img_cols, 1) | |
X_train = X_train.astype('float32') | |
X_test = X_test.astype('float32') | |
X_train /= 255 | |
X_test /= 255 | |
Y_train = np_utils.to_categorical(y_train, nb_classes) | |
Y_test = np_utils.to_categorical(y_test, nb_classes) | |
model = Sequential() | |
model.add(Conv2D(nb_filters, | |
kernel_size=kernel_size, | |
padding='same', | |
input_shape=input_shape)) | |
model.add(Activation('relu')) | |
model.add(Conv2D(nb_filters, kernel_size=kernel_size)) | |
model.add(Activation('relu')) | |
model.add(MaxPooling2D(pool_size=pool_size)) | |
model.add(Dropout(0.25)) | |
model.add(Conv2D(nb_filters*2, kernel_size=kernel_size, padding='same')) | |
model.add(Activation('relu')) | |
model.add(Conv2D(nb_filters*2, kernel_size=kernel_size)) | |
model.add(Activation('relu')) | |
model.add(MaxPooling2D(pool_size=pool_size)) | |
model.add(Dropout(0.25)) | |
model.add(Conv2D(nb_filters*4, kernel_size=kernel_size, padding='same')) | |
model.add(Activation('relu')) | |
model.add(Conv2D(nb_filters*4, kernel_size=kernel_size)) | |
model.add(Activation('relu')) | |
model.add(MaxPooling2D(pool_size=pool_size)) | |
model.add(Dropout(0.25)) | |
model.add(Flatten()) | |
model.add(Dense(64)) | |
model.add(Activation('relu')) | |
model.add(Dropout(0.5)) | |
model.add(Dense(nb_classes)) | |
model.add(Activation('softmax')) | |
model.compile(loss='categorical_crossentropy', | |
optimizer='adadelta', | |
metrics=['accuracy']) | |
print('Starting fit...', file=sys.stderr) | |
history = model.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, | |
verbose=1, validation_data=(X_test, Y_test)) | |
print('Fit complete.', file=sys.stderr) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment