Created
October 13, 2014 04:53
-
-
Save selimb/848fe39a5733127f1027 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"metadata": { | |
"name": "", | |
"signature": "sha256:e3e468554625cb5edf2fe4c5524bbb9d7d3a990559abc5074b07821cbfac487b" | |
}, | |
"nbformat": 3, | |
"nbformat_minor": 0, | |
"worksheets": [ | |
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Theoretical Results\n", | |
"===================\n", | |
"\n", | |
"First three natural frequencies\n", | |
"-------------------------------" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"%matplotlib inline\n", | |
"import matplotlib.pyplot as plt\n", | |
"import numpy as np\n", | |
"from numpy import cos,sin,sinh,cosh\n", | |
"from scipy.optimize import fsolve" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 1 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"#Apparatus specifications\n", | |
"m = 0.051; l = 0.32; w = 0.015; \n", | |
"h = 0.004; rho = 2.7*10**3;\n", | |
"E = 6.9*10**10\n", | |
"I = (w*h**3)/12\n", | |
"A0 = w*h\n", | |
"#Set a to 20cm\n", | |
"a = 0.2" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 2 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"#Calculated constants\n", | |
"alpha = m/(rho*A0*l)\n", | |
"xi = a/l" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 3 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Must solve equation below iteratively for $\\lambda$\n", | |
"\n", | |
"$$f(\\lambda) = 2\\sin(\\lambda)\\sinh(\\lambda)-\\alpha\\lambda \\Big[\n", | |
"\\sin(\\lambda\\xi)\\sin(\\lambda\\cdot(1-\\xi))\\sinh(\\lambda) -\n", | |
"\\sinh(\\lambda\\xi)\\sinh(\\lambda\\cdot(1-\\xi))\\sin(\\lambda)\n", | |
"\\Big]$$" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"#f(lambda)\n", | |
"def f(x):\n", | |
" f1 = 2*sin(x)*sinh(x)\n", | |
" f2 = sin(x*xi)*sin(x*(1-xi))*sinh(x)\n", | |
" f3 = sinh(x*xi)*sinh(x*(1-xi))*sin(x)\n", | |
" return f1-alpha*x*(f2-f3)\n", | |
" " | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 4 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Let's get a feel for what the function looks like. \n", | |
"\n", | |
"This also allows us to guess roots!" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"lamb = np.arange(0,20,0.01) \n", | |
"plt.plot(lamb,f(lamb))\n", | |
"plt.axis([0,20,-100,100])\n", | |
"plt.plot([0,20],[0,0],'--k')\n", | |
"plt.show()" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEACAYAAAC6d6FnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEu1JREFUeJzt3X2MXXWdx/H3tLQWKEqf7HNoU4qhRFJYKd2AMBoWpmoW\nCGIx2WwDjcGwyCqr1rqRaXcTIsYSl1XQgEbZrDwkq02NIC2ECcHEQhWwWApt0yp9oK0lBJCnDnP3\nj98ZOp17Lp2nc3/nnt/7lZzMueeeO/PN7b3nc39PtyBJkiRJkiRJkiRJkiRJkqRE/QTYD2zuc2wi\nsAF4AVgPnNznvpXANmArcHGTapQkFeDjwFkcHQDfAb6e7a8Avp3tLwCeBsYAc4DtwKimVClJKsQc\njg6ArcDUbH9adhvCp/8Vfc77DbC46OIkSfWK+vQ9ldAtRPazNwxmALv7nLcbmFlQDZKk99GM7pda\ntr3f/ZKkJjuuoN+7n9D18xIwHTiQHd8DzO5z3qzs2FHmzZtX27FjR0GlSVJl7QBOHejJRbUA1gHL\nsv1lwNo+x68CxgJzgfnAE/0fvGPHDmq1mtsIbZ2dnYN+zJtv1hg7Nn7tRW1f/nKNW29tznM5kG3c\nuBpvvBH/eWn2dqznc8KEGocOxa/zWFtHR40HHohfBzBvMBfqkWgB3ANcCEwGXgRuIsz6uR9YDuwC\nPpeduyU7vgXoBq7DLqBSevddGD06dhWSijQSAfD5BscvanD85mxTiRkAUvU5Bz8B7e3tg36MAZBv\nKM+lGvP5jMsASMBQA+C4oqYItDAvWCPL5zMuA0C5urttAUhVZwAol11AUvUZAMqVQhdQzflnSpwB\noFxV7wJqa4tdgRSfAaBcdgFJ1WcAKJcBIFWfAaBcKYwBSKkzAJSr6mMAkgwANWAXkFR9BoByGQBS\n9RkAypXCGIDrAJQ6A0C5qj4G4DoAyQBQA3YBSdVnACiXASBVnwGgXCmMAUipMwCUq+pjAJIMADVg\nF5BUfQaAchkAUvUZAMrlGIBUfQaAcqUwBuBCMKXOAFCuqncBuRBMMgDUQNUDQJIBoAYcA5CqzwBQ\nrhTGAKTUGQDKZReQVH0GgHIZAFL1GQDK1d3tGIBUdQaAcqXQAnAdgFJnAChX1QPAdQCSAaAGnAYq\nVZ8BoFxOA5WqzwBQrqp3AUkyANSAASBVnwGgXI4BSNVnACiXYwBS9RkAypVCF5DrAJQ6A0C5qh4A\nrgOQDAA14BiAVH0GgHI5BiBVnwGgXFXvApJkAKgBA0CqPgNAuRwDkKrPAFAuxwCk6jMAlMsuIKn6\nDADlSiEAXAim1BXdy7sLeBV4FzgMLAImAvcBp2T3fw54peA6NEhVHwNwIZhUfAugBrQDZxEu/gDf\nADYApwGPZLdVMo4BSNXXjC6g/p+1/hH4Wbb/M+CyJtSgQUqhC0hKXTNaAA8Dm4AvZMemAvuz/f3Z\nbZWMASBVX9G9vOcB+4AphG6frf3ur2VbnVWrVr23397eTnt7eyEFKl93d7XHAKQq6Orqoqura8iP\nL/otvi/7eRD4JWEcYD8wDXgJmA4cyHtg3wBQ89kCkMqv/4fj1atXD+rxRXYBnQCclO2fCFwMbAbW\nAcuy48uAtQXWoCEyAKTqK7IFMJXwqb/37/wvsJ4wHnA/sJwj00BVMlWfBgquA5CKfIvvBBbmHH8Z\nuKjAv6sRUPVpoK4DkFwJrAbsApKqzwBQLgNAqj4DQLlSGAOQUmcAKFfVxwAkGQBqwC4gqfoMAOUy\nAKTqMwCUK4UxANcBKHUGgHJVfQzAdQCSAaAG7AKSqs8AUC4DQKo+A0C5UhgDkFJnAChX1ccAJBkA\nasAuIKn6DADlMgCk6jMAlMsxgOZyTYJiMACUK4UxgLJddF2boGYzAJSr6l1AXmwlA0A5arXqB4Ak\nA0A5enrCJ+RRvjqkSvMtrjp++pfSYACojgEgpcEAUB2ngEppMABUJ4UpoJIMAOVIpQuobOsApGYz\nAFQnhQBwHYBkACiHYwBSGgwA1XEMQEqDAaA6KXQBSTIAlMMAkNJgAKiOYwBSGgwA1XEMQEqDAaA6\nqXQBuQ5AqTMAVCeFAHAdgGQAKIdjAFIaDADVcQxASoMBoDopdAFJMgCUwwCQ0mAAqI5jAFIaDADV\ncQxASoMBoDp2AUlpMABUJ5UAcCGYUmcAqE53d/XHAFwIJhkAypFKC0BKnQGgOgaAlAYDQHWcBiql\nIfm3+SuvwPPPw8GD8NprMHYsTJgACxbAtGmxq4vDaaBSGpIKgMOH4Q9/gMceC9umTeGi/5GPhIv9\nSSfBO+/AX/8Kzz4LkyfDVVfBddelFQZ2AUlpiBUAHcD3gNHAXcAtRfyRt9+GJ5+Erq5wwf/d72Du\nXLjgAli2DG6/HWbNyp8RUqvB738PP/0pnHEG3HgjrFiRRteIASClIcblbDTwfeAiYA/wJLAOeG64\nv7jvBb+rCzZuDJ/uL7wQrr8e7r0XJk4c2O9qa4OPfSxsX/saXHMNrF8Pa9eGLqIqS2UMwHUASl2M\nt/kiYDuwK7t9L3ApgwyAQ4fghRdg8+bQlbNpE2zdGvruP/EJ+MpX4Pzz4UMfGn7Bp5wCGzbAV78a\nwuSRR2DKlOH/3rJKYQzAdQBSnACYCbzY5/Zu4Nz+J/385+ET/RtvhD75/fvhwAHYvTtc+Ht64LTT\nwgX/nHNg+XI480w4/vhiih41CtasgZUr4bLLQgiMG1fM34otlRaApOa7Arizz+1/Av673zm1vO2z\nn+2sPf54rXbgQK3W01N7T2dnZ+75nZ2dtTye//7nX3JJueop4vxvfatWW726PPV84AO12ptvlqee\nspw/YUKtduhQeeop2/mPPvporbOz870tu2/AYjSEFwOrCAPBACuBHo4eCK7VStxB++qrsHAh3HYb\nfOYzsasZeWvWwN694WdV3XRTaOXcdFPsSoJx48KU5Kq2Kodq4kTYvn3gY3exLFkCN9wQfsbUFvo2\nB3xdj7EQbBMwH5gDjAWWEgaBW8YHPxhmB117bZhGWjUpfBeQpDgB0A1cDzwEbAHuYwRmADXbBRfA\nJz8JtxQygTUuA0BKQ6y3+YPZ1tJuvjl0BX3xi2E9QVWkMAtIkt8FNCyzZ8PVV8N3vxu7kpGVyiyg\nEg8zSU1hAAzTjTfC3XeHqapVkUIXkOsAJANg2GbMgCuugB/8IHYlIyeFAJBkAIyIG26AO+8MF84q\nMACkNBgAI+CjHw3jAQ+2/LB2YABIaTAARsi118KPfhS7ipHhLCApDQbACLnySnj88fAfy7Q6WwBS\nGgyAEXLiidDRAb/4RexKhi+VaaBS6gyAEbR0Kdx3X+wqhs8WgJQGA2AELVkCTz0F+/bFrmR4UgkA\nF4IpdQbACBo3Di65BH7969iVDE8KAeBCMMkAGHGf/jQ88EDsKoYnhQCQZACMuI6O8L+Fvf127EqG\nzmmgUhoMgBE2ZQqcfnqYEtqqbAFIaTAACvCpT7V2N5DTQKU0GAAF6OiA9etjVzF0tgCkNBgABTj7\nbPjLX1r3K6INACkNBkABjjsOzjsPHnssdiVDk0oAuA5AqTMACnLhhdDVFbuKoUkhAFwHIBkAhWlv\nb+0AcBqoVH0GQEHOPht27YJDh2JXMnjOApLSYAAUZMwYWLwYfvvb2JUMXgpdQJIMgEItXgwbN8au\nYvAMACkNBkCBzj3XAJBUXgZAgRYtgiefhJ6e2JUMjgEgpcEAKNCUKTB5MmzdGruSwTEApDQYAAVr\nxW6gVKaBuhBMqTMACtaKAZDCNFAXgkkGQOHOOQc2bYpdxeDYBSSlwQAo2JlnwnPPhYtqqzAApDQY\nAAUbPx5mzYLnn49dycAZAFIaDIAmWLgQnn46dhUDZwBIaTAAmsAA0LE4I0kxGABN0EoB0NMTLkaj\nfGU0nTOT1Gy+zZugNwBa4VNeClNAe7XCv4dUJAOgCaZNC5+o9+6NXcmxpdL946dtyQBoira2MB30\nmWdiV3JsqQSAJAOgac44I6wHKDsDQEqHAdAkCxbAli2xqzg2A0BKhwHQJAaApLIxAJrk9NNDAJR9\n5kkq3wQqyQBomkmT4Pjjyz8TKKVpoFLqDIAmaoVuoJS6gMreGpOKZgA0kQFQHq4DkAyApjIAJJWJ\nAdBEBoCkMjEAmqh3JlCZOQtISkdRAbAK2A08lW1L+ty3EtgGbAUuLujvl9KHPwyHD8PLL8eupDFb\nAFI6igqAGnArcFa2PZgdXwAszX52ALcXWEPptLXB/PmwfXvsShpzGqiUjiIvvnnzLC4F7gEOA7uA\n7cCiAmsonfnzYdu22FU0ZgtASkeRAfAl4Bngx8DJ2bEZhK6hXruBmQXWUDoGQHm4DkCpG85bfQMw\nLef4vwN3AP+R3f5PYA2wvMHvyX0brlq16r399vZ22tvbh1hmucyfDw89FLuKxlIJANcBqAq6urro\n6uoa8uOH81b/hwGedxfwq2x/DzC7z32zsmN1+gZAlcyfD9//fuwqGkslAKQq6P/hePXq1YN6fFFd\nQNP77F8ObM721wFXAWOBucB84ImCaiilU08t9yCw00CldBT1We8WYCGhe2cncG12fAtwf/azG7iO\nBl1AVTV5cviP1w8dCl8QVza2AKR0FPVW/+f3ue/mbEtS71TQbdvKGQBOA5XSkcwc/DIp80wgWwBS\nOgyACAwASWVgAEQwbx7s2BG7inwpBYDrAJQ6AyCCuXNh167YVeRLJQBcByAZAFHMnQs7d8auIp/T\nQKV0GAARTJ8evhH0rbdiV1LPWUBSOgyACEaPhtmz4c9/jl1JvVS6gCQZANHMmVPObiADQEqHARBJ\nWQeCDQApHQZAJGUdCDYApHQYAJHMmWMLIDbXASh1BkAkZW4BpDAN1HUAkgEQTVkHgZ0GKqXDAIhk\n6lT429/g9ddjV3K0lLqApNQZAJG0tcEpp5RvHMAAkNJhAERUxoHgVMYAJBkAUc2eDS++GLuKox0+\nDGPGxK5CUjMYABGVMQC6uw0AKRUGQERlDIDDh9MZA3AdgFJnAERU1gBIoQXgOgDJAIiqjAHgLCAp\nHQZARLNmwZ490NMTu5IjUmkBSDIAojrhBBg/Hg4ejF3JEQ4CS+kwACIrWzdQSoPAUuoMgMjKFgC2\nAKR0GACRlS0AbAFI6TAAIitbAKTUAnAdgFJnAERWtgBIpQXgOgDJAIiubAGQUgtASp0BEFnZAiCV\nFoAkAyC6mTPhpZfC/8RVBrYApHQYAJGNHQuTJsG+fbErCWwBSOkwAEpg5kzYuzd2FYEtACkdBkAJ\nzJhhC0BS8xkAJTB9ui2AGFwHoNQZACUwY0Z5AiCVFoDrACQDoBTKFAAptQCk1BkAJVCmAEilBSDJ\nACiFMgWALQApHQZACZRlFlCtFhakjR4duxJJzWAAlMCUKfDKK/DOO3Hr6P3/gB0gldJgAJTAqFEw\ndWr4SoiY7P+X0mIAlEQZ1gKk1v/vOgClzgAoiTIMBKfUArCbSzIASqMMAZBaC0BKnQFQEmWYCZRS\nC0DS8ALgSuBPwLvA2f3uWwlsA7YCF/c5/nfA5uy+/xrG364cWwCSmm04AbAZuBx4rN/xBcDS7GcH\ncDvQ2+N6B7AcmJ9tHcP4+5VSZAB0dXUN6DxbAMc20OdSA+PzGddwAmAr8ELO8UuBe4DDwC5gO3Au\nMB04CXgiO+9u4LJh/P1KKUMA2AI4Ni9YI8vnM64ixgBmALv73N4NzMw5vic7LsrRBWQLQErLsd7u\nG4BpOce/Cfxq5MtJ16RJ8Prr8NZbMG5cnBpSawG4DkAavkc5ehD4G9nW6zeELqBpwHN9jn8e+GGD\n37kdqLm5ubm5DWrbTpM9Spjd02sB8DQwFpgL7ODIIPBGQhi0AQ/gILAktaTLgReBN4GXgAf73PdN\nQhJtBS7pc7x3Guh24LbmlClJkiSptDoIrYZtwIrItVTBLuCPwFMcmX6rgfsJsJ/Qau01kTA54gVg\nPXByhLpaVd7zuYowO/CpbLNbeGBmE7rf/wQ8C9yQHW/Z1+doQtfQHGAMYRzh9JgFVcBOwgtCQ/Nx\n4CyOvmB9B/h6tr8C+Hazi2phec9nJ3BjnHJa2jRgYbY/HniecL1s2dfn3xNmDPXqP5tIg7cTmBS7\niBY3h6MvWFuBqdn+tOy2Bm4O9QHwb3FKqZS1wEUM8vVZpi+Dm0kYVO7Vu4BMQ1cDHgY2AV+IXEtV\nTCV0Y5D9nPo+52pgvgQ8A/yYFuqyKJE5hJbVRgb5+ixTANRiF1BB5xFeGEuAfyE0wTVyeudea+ju\nIEwXXwjsA9bELafljAf+D/hX4LV+9x3z9VmmANhDGNjoNZujvzpCg9f7BdMHgV8CiyLWUhX7ObI6\nfjpwIGItVXCAIxequ/A1OhhjCBf//yF0AcEgX59lCoBNhG8InUNYRLYUWBezoBZ3AuHL9wBOJHwt\n9+bGp2uA1gHLsv1lHHnjaWim99m/HF+jA9VG6DLbAnyvz/GWfn0uIYxmbyf8nwIaurmEmVRPE6aJ\n+XwO3j3AXuAdwvjU1YRZVQ/TgtPsSqD/83kN4VuB/0gYA1iLYyoDdT7QQ3h/951C6+tTkiRJkiRJ\nkiRJkiRJkiRJkiRJkqrk/wEcHTTQTUOkIgAAAABJRU5ErkJggg==\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0x38496d0>" | |
] | |
} | |
], | |
"prompt_number": 5 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"#Guess 3,6,9 from plot above.\n", | |
"lambdas = fsolve(f,[3,6,9])\n", | |
"print \"First three roots are:\"\n", | |
"print lambdas" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"First three roots are:\n", | |
"[ 2.44448096 5.80840068 9.20869831]\n" | |
] | |
} | |
], | |
"prompt_number": 6 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Let's do a sanity check as well to make sure that $f(root) = 0$" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"for root in lambdas:\n", | |
" print \"\"\"f(%.4f) = %f\n", | |
" \"\"\" % (root,np.abs(f(root)))" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"f(2.4445) = 0.000000\n", | |
" \n", | |
"f(5.8084) = 0.000000\n", | |
" \n", | |
"f(9.2087) = 0.000000\n", | |
" \n" | |
] | |
} | |
], | |
"prompt_number": 7 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"------------" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"def get_frequency(lamb):\n", | |
" lamb = np.array(lamb)\n", | |
" omega = lamb**2 * \\\n", | |
" np.sqrt(E*I/(rho*A0*l**4))\n", | |
" return omega/(2*np.pi)\n", | |
"\n", | |
"frequencies = get_frequency(lambdas)\n", | |
"print \"The first three natural frequencies are :\"\n", | |
"print frequencies" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"The first three natural frequencies are :\n", | |
"[ 54.21326006 306.0873221 769.35839485]\n" | |
] | |
} | |
], | |
"prompt_number": 8 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"First three mode shapes\n", | |
"-----------------------" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"def get_mode_shapes(lamb,quiet = False):\n", | |
" step = 0.005\n", | |
" x1 = np.arange(0,a,step)\n", | |
" x2 = np.arange(a,l+step,step)\n", | |
" x = np.hstack((x1,x2))\n", | |
" C = 1.0\n", | |
" lamb = np.array(lamb)\n", | |
" s = (sinh(lamb)*sin(lamb*(1-xi))) / \\\n", | |
" (sin(lamb)*sinh(lamb*(1-xi)))\n", | |
" s1= (sinh(lamb)*sin(lamb*xi)) / \\\n", | |
" (sin(lamb)*sinh(lamb*xi))\n", | |
" D = (C*sinh(lamb*xi)) / \\\n", | |
" (sinh(lamb*(1-xi)))\n", | |
" y1 = C * (sinh(lamb*x1/l)- \\\n", | |
" s*sin(lamb*x1/l))\n", | |
" y2 = D * (sinh(lamb*(1-x2/l)) - \\\n", | |
" s1*(sin(lamb*(1-x2/l))))\n", | |
" y = np.hstack((y1,y2))\n", | |
" y_max = y[np.argmax(np.abs(y))]\n", | |
" y_normed = y/y_max\n", | |
" if not quiet:\n", | |
" print \"For lambda = %f\" % lamb\n", | |
" print \"sigma = \",s\n", | |
" print \"sigma_1 = \",s1\n", | |
" print \"D = \",D\n", | |
" print \"\\n\"\n", | |
" return (x,y_normed)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 26 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"shapes = [get_mode_shapes(a_lamb) for a_lamb in lambdas]" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"For lambda = 2.444481\n", | |
"sigma = 6.72890540093\n", | |
"sigma_1 = 4.05355894771\n", | |
"D = 2.08983649546\n", | |
"\n", | |
"\n", | |
"For lambda = 5.808401\n", | |
"sigma = -68.6392486333\n", | |
"sigma_1 = 9.07372104712\n", | |
"D = 4.32454043011\n", | |
"\n", | |
"\n", | |
"For lambda = 9.208698\n", | |
"sigma = -452.272563332\n", | |
"sigma_1 = -74.230910857\n", | |
"D = 10.0058136711\n", | |
"\n", | |
"\n" | |
] | |
} | |
], | |
"prompt_number": 27 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"fig = plt.figure()\n", | |
"ax = plt.axes()\n", | |
"def plot_th(an_ax,ls='-'):\n", | |
" lines = []\n", | |
" for a_shape in shapes:\n", | |
" lines.append(an_ax.plot(a_shape[0],a_shape[1],'-'))\n", | |
" return lines\n", | |
"plot_th(ax)\n", | |
"ax.legend(('n = 1','n = 2','n = 3'),loc='best', fancybox=True, framealpha=0.5)\n", | |
"ax.plot([0,l],[0,0],'--k')\n", | |
"ax.set_title('Theoretical normalized mode shapes')\n", | |
"ax.grid()\n", | |
"plt.show()\n" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEKCAYAAAAfGVI8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4VEUXh98Qeg09gEjvIE0Ekd6LiIIIoggoIKhgQURA\nP3oXpYmIEor0okDoCAlFmkgXARFCJ/SekLLn+2M2ECB19+7eu8m8z7NPsrfM/Hb27j13zsycAxqN\nRqPRaDQajUaj0Wg0Go1Go9FoNBqNRqPRaDQajUaj0Wg0Go3GBAYBv5gtIhbeAtYZUI4NKGxAOe4m\nCKhn/78/8JPB5dcBzhpcZkIJBN7zgDI1LiSl2QKSEXcBsf+fAQgFIu3v34+2z2wKAidR14bNvm2u\n/ZVcif7djDBNhWsQjL/2XFGmxoWkMFtAMiIjkMn+Og28HO39PMDLTToSavzdpcdo9MONRpNItCGw\nDgKkBmYBt4HDQOVo+/MCS4HLqCf2ntH2pQHGA+ftr+/sZYFyO5wDvgAuAtNRN/kvgRPAVWAhkNV+\n/Bb735t2HdWATsDWaPWVATYA14BLQD/79heAHcAN4AIwCUiVwM8fCAwBttnrXQdkj7b/FeBve9kB\nQMlo+4Lsn+8gcAcogurNdALO2HV2B6rYj7lh1xZFEWATqi2uAHOALLHoHMQjF95ke31Rr3BgoH1f\nXN9XOmAmcN3+marEUlcUNqAH8C+qbYbYNe9AfU8LeLydu9qPvQYsB/JE29cQOGo/bxLqWohu9N8F\njti1rQWejUVTWlQ7XUW1524gZ7T9BYn9u1yMuhZvApuB0tH2zQSmAuvt5wY+oaEkj669o0CbaPua\nodrzNuqa7x2Ldo3GEpzikc85ikFACNAE9cMcgfqhgzLYfwFfoZ54CwH/AY3s+4cA24Ec9tcf9m2g\nDEE4MBJ1s0gLfGw/Pq9921RUrwSgAOrGE/0hoROPDEEm1I/4U5SxyYgyAACV7P+nsJdzxF5XFHGN\nEQSibl5F7RoD7JoBiqNca/UBb6CP/diop/8gYC+QD2UUC9rrmmLX2BB4APxmb5+8QDBQy35+EXvZ\nqez7N6OMaRTRv6+BxDyWUwF10y9P/N/XKHsdPsAzKKN/JpZ2wf5ZfkO1dWn7Z9lk/5yZUTe/d+zH\n1kMZswr2zz7RXhf2z3YbaIVqx09Q18a79v0tUe1awv4ZBqCupZh4H1iB+q68gIqoawPUd3mCmL9L\nUNdTBlR7fwfsi7Zvpl1jDbv+8Ty69jKgxlI62vVVsH/WqIeCi8BL9v+z2DVpNJYlNkOwPtr70sB9\n+/9VUe6k6PQD/Oz//4cyIFE0stcByhA84FEPAdQNOnr9eYAw1I+rIHEbgjdRN7mE8Anwa7T3cRmC\nANRAbBQ9gDX2/79GPfVG4YV64ou6kZ+ya4yioL2u6E/CV3n86XEJjxup6LyKMixRRP++BvG0IciJ\nMkZv2N8n5PtqFG1fV+IeLLYBL0Z7vwdlDKP4hkeGazrK0ESRAfXdFkAZi+1PlH2WR4ZgTbT/QV0D\n94D8MWjqjDIS5WLYF9d3+SQ+qM8XZURm8uihJEp/BMpgtuVRjzWKH4H/2f8/DXRDGUdNItCuIWsR\nHO3/+6inqain67yoLnjUqx+Qy35sHh6/8ZyxHx/FFdTNIIqCqCfMqLKOoH5suROgMT/K1RETxYGV\nqCezW8BwHncJxMelaP+HoJ6AQX2W6E/MgrqB5Yu2LaYbafT2DInhfVT5uVGG5pxd9y+J0J0KZVTm\nAIvs2+L7vvI+oTeu3kAUcX2WUNQNE56+Fu6h3Cj57PvOPVFudB0FgAnRNF+zb8/H0/yCcvksQLkj\nR/P4+Exs36U3ylCdQLV11ANLDvtfeULjPZSbKq9dX1Ueb9f2PLpuW6PcQ0GoXkm1GHRrYkAbAusQ\n1yyLs6gfTNZor8yoAWdQ/viC0Y5/1r4ttrLPoHoQ0ctLj7qBxzfb4wyxP9X/gDIqRVFd8wEYc42d\nR90EovBCGaTz0bY5Mksl6pwRqBlcZVG6O5Bw3ZNQvu6vom07Q9zf10Ue93vH5odPKNE/+5PXQgaU\nUTtnrzf6073XE+/PoJ6oo+vOAOyMoc4IlPuxDFAd9dneieG4J2mPGu+pj2rrQtG0xKQpI5AN9V2f\nQbm5ouvLBHxoP3YPqjeXE1jGI8OsiQdtCKxDXLN0dqMGI79ADTR6o25az9v3z0fdiKLGCP5H3GsS\npqJuflE3oJyoHyeo3oMN5TePiVWoJ8uPUf74TDwaI8ho13kf5bftEYeGmIitDRYDzVHumVSoQcBQ\nnnZzOFpXRtST523U02+fGM94mvdR7qm3n9ge3/e1CNVDiBoj6Eni8Xri/6j381Fum/Ko72cE6kZ+\nBliNunG/hnp67wX4RitnKsqlEzV4m4XH3WnRqYNyC3nzaKA8Mtr+2L7LjChX5XWUkYlpOm4zlK8/\nNTAUNVZ2HnXtFUe1dyr7qwrqWkuFWu+Sxa7jzhN6NHGgDYF1iGnuddT7SNQTVwWUW+YKMI1HvtBh\nqKehg/bXHvu2J8uJYgJqoC9qZsYOHt3M76NcOn+gfqxVn9B2BzX42gL1hHkcdVMA+Bz1xHfbrm/B\nE3XH99T+5LFR74+hfvyT7J+9ub3+iASWFd/+waiB7luAP2q2T2znR9fVDvVEe4FHM4e+RBnSuL6v\nwSj3zSnUzJzZ8eiNaV9sbbURNaay1K6rkF0nPBonGWX/vyhqZk8Uy1AungWotjgENI5Fky/KQN9C\n9QIDefzhIzZ9s1Gf/TxqkHxHDMfOQw3KX0MN+EYZ2juosZV29vMvogaho8a/3ka16S1Uz+atWLRr\nNBqNxsLMQPUCNG5E9wg0Go2V8NSFjB6NNgQajcZK6PAUGo1Go9FoNBqNRuNWLOOPK1++vBw4cMBs\nGRqNRuNJHEDNTnMKy4wRHDhwABHxyNfAgQNN16D1m69D6/fMlyfrR60XcRrLGAJPJigoyGwJTqH1\nm4vWby6ert8ItCHQaDSaZI42BAbQqVMnsyU4hdZvLlq/uXi6fiOwzGAxIHafl0aj0WgSgJeXFxhw\nH9c9AgMIDAw0W4JTaP3movWbi6frNwJtCDQajSaZo11DGo1G46Fo15BGo9FoDEEbAgPwdB+j1m8u\nWr+5eLp+I9CGQKPRaJI5eoxAo9FoPBQ9RqDRaDQaQ9CGwAA83ceo9ZuL1m8unq7fCLQh0Gg0mmSO\nHiPQaDQaD0WPEWg0Go3GELQhMABP9zFq/eai9ZuLp+s3Am0INBqNJpnjrG/JD2gOXAbKxXLMRKAp\ncB/oBOyL5Tg9RqDRaDSJwCpjBDOAJnHsbwYUBYoB3YAfnKxPo9FoNAbjrCHYCtyIY/8rwCz7/7sA\nHyC3k3VaDk/3MWr95qL1m4un6zeClC4uPx9wNtr7c8AzQLCL603W2MTGvbB7hESEkD1ddrxTeJst\nyVKIwL17cOeO+h/Ay965TpUKfHwgpat/GcmdBw9U46dNa7YSDcasIygI+BPzGIE/MAr4w/7+d+AL\nYG8Mx0rHjh0pWLAgAD4+PlSoUIE6deoAj6y2fv/o/a3QW9gK2Nh8ejOr1q/i8v3LhOcPJzQilDRn\n05DaOzVhz4ZRJGsRsgVnI3/m/DRv1JxmxZqxf+d+0/W74n3NmnX47z/49ddALl2C1KnrEBQEhw4F\ncvs2PHhQh5s3IWXKQNKnh7Rp6yACDx6o86EOt29DqlSBZMoEvr51yJMH0qQJJE8eaNiwDoULw+XL\ngaRNa/7n9Yj3Dx4QOGoUnDpFnbt34e+/CfzvP0iVijovvwxvvEFghgyQNq019Fr4fdT/QUFBAMya\nNQsMuI+72hBMBQKBBfb3R4HaxNwj0IPFCeDKvSv8sOcHFv29iLO3z1I9f3VqF6hNzWdrUjRbUTKm\nzki6VOlI4aW8fvfD7/PvtX85evUox64dY+/FvQQEBVCvUD3eLPsmLxd/mfSp0pv8qRwjMhIOHoRd\nu+DAAdi/Hw4dgpw5oUQJKFjw0atAAciRQz3tZ8kCqVPHXq7NBnfvwo0b6nXxIpw8+ej1339w4gQU\nKQKVKkHlyvD88+oVV7nJkj//hM6dVePXqAFlykDZslC8ONy+Db/9BosXq+MaN4avvoJysc070TyJ\nUYPFRlAQOBTLvmbAavv/1YCdcZQjnkpAQIDL6zgcfFi6LO8iPqN8pOuKrrLr3C4Jjwx3qKybITdl\nxr4Z0uiXRuIzykeaDWsmp2+eNlix8UREiOzaJTJmjEjz5iI+PiIlS4o0bRogEyeKbNkicvOme7SE\nhors2SMybZrI+++LVKwokimTSNOmIuPGiRw8KGKzJawsd1w/riRG/SEhIl9+KZIrl8j8+fE3xuXL\nIuPHi+TIIbJsmUt0xoYntz9giafn+cAFIAw1FvAu8L79FcVk4ARwAKgUR1lmt6nDuPJCOnDpgDT+\npbH4fuMrQwKHyOW7lw0t/9KdS/L2uLcl2+hs8vm6z+Xa/WuGlu8sd+6ILF0q0rGjSM6cImXKiHz0\nkcjixSKXLqljrPJDvnZNZMkSke7dRYoWFcmTR+TDD0U2b1ZGLDasot9RntK/a5dI6dIirVo9+pIS\nyq5dIvnyiYwalXBL6iSe3P5YxBAYidltailCwkOk/+/9JceYHDJl9xQJCQ9xaX0Xbl+Q7v7dJceY\nHDJq6yi5H3bfpfXFxZ07Ir/8ItKsmXrKbthQZNIkkaAg0yQ5xLFjIsOHi5Qvr4zCRx+JbN/utvub\nOWzYoCz2ggWOf9Bz50QqVRJ55x3V9dLECgYZAkv4luzYP5dmc9Bmuq3sxnO5n2Nik4nkyZTHbXUf\nu3qMfhv7ceTKERa8voAKvhXcUm9EBPz+O8yZAytXKndy+/bQvLny6Xs6x4/DokUwe7aaKNO9O7z1\nVtL4bA85eBAaNIClS6FmTefKun8fOnaECxdg9eok1lDGYaUxAqMw27g6jFFdy/th9+V9//cl37h8\n8ts/vxlSZkKISf/cg3Ml55icMn7HeLG58BH23DmRgQNF8uYVeeEFkYkTRYKDE1eGJ3XtIyNFfv9d\npE0bNcbRpYvI9OkBZstyioCAAJGzZ0Xy51c9AaOIjFQN9PrrLu1GedL18yQY1CPQsYYswsU7F6kz\nqw43Q2/y9wd/82rJV03V075ce3Z22cm8w/NoMb8FV+5dMaxsEdi0CV5/XU0QuXIF1q1Ts3969oRc\nuQyrynKkSAH166vewT//qBlNn38OLVrA9u1mq3OQu3ehaVPo1QvatjWu3BQpYNIkNVVr8mTjytVY\nGrONq2n8deEvyf9tfhkSOMSlT9+OEBYRJl9u+FLyjcsnf5z5w6mywsNF5swRKVdODfp+/73IrVsG\nCfVg7t8XmTJFpGBBkdq1Rdau9aBxhAcPROrXVwMgrhL9339q3GHXLteU78GgB4uTBkv+XiI5xuSQ\nJX8vMVtKnKw+vlpyjskpy48uT/S59+6JTJ7soTc6NxIergbJS5cWqVFDDSxbni5dRFq2jHtalBH8\n+qu6gK5fd209HgbaEFgHR32MI7eOlPzf5pe/LvxlrKBEklD9u8/tFt9vfOXnv35O0PH37qk5/7ly\nqXuFq25snuzjFXlaf0SEyIwZyuXeqpXI0aOmyIqftWtFChWSgNWr3VPfJ5+ItGhh+FOEJ18/6DEC\nz2bYlmHMPjCbXV12USlPXMsrrEOVfFXY3Gkzw7cOZ/iW4Ugss7zCwmDKFChWDHbuhI0bYdkyePFF\nNwv2ULy9oVMnOHYMqlZVM6h69ICrV81WFo1795SoH36AdOncU+fo0RAcDOPGuac+jSmYbVzdxsit\nI6XEpBJy8c5Fs6U4xIXbF6T8D+Xlw1UfSqQt8uH2iAiRmTNVD75JE7XyVuM8166J9OqlelY//aQm\n05hOnz4i7du7v96gIJHs2UX+/df9dVsQ9DoCz2Tc9nFM/WsqmzttJm+mvGbLcZhbobd4ef7LlM9d\nnklNJ7FlixeffALp08OoUc5PI9c8zf798MEHatbVlClQsaJJQvbtgyZNVGAnM6Z4jRwJe/ao9QrJ\nHL2OwEIk1Mc4fsd4KTyhsJy9dda1ghKJoz7SmyE3pczESlLyg6+kQAGRhQvNGQT2ZB+vSOL0R0aK\nTJ+uegcffyxy967rdMVIRITI88+L+Pk93OT29r9/X+TZZ1VwKQPw5OsHPUbgWfz010+M3zWeTe9s\n4pnMz5gtx2nu3YNRg7NwYfRaruZaTI/Z3/LGG4/i+mtcQ4oU8O67cOSIioxavjxs3epGAZMnQ8aM\nahDDLNKlgxEj4LPPVKhYTZLCbOPqMjb8t0Fyj80t/15LGn5Nf3+RAgWUi/j8eZEzN89Ige8KJHg2\nkcY4li9Xq7I/+UTN0nIpp08r//yxYy6uKAFERopUqaIWpiRj0NNHPYNjV49JrrG5JOBUgNlSnObs\nWTWdsWhRkfXrH993/OpxyfNNHll0eJE54pIxV68qo1ysmIvXHrRtKzJokAsrSCRbtyoX0X3zAiSa\nDdoQWIfYfIzX71+X4pOKy09//eReQYkkPh9pZKSKAZQ9u8jXX6tQ8zGx/+J+yTkmp+w4u8N4kXHg\nyT5eEeP0//qrSO7cIsOGuWB916FDamDizp2ndpna/q1aiYwY4VQRnnz9oMcIrE14ZDhtFrehebHm\ndKnUxWw5DnPiBNSpAwsWwLZtMGRI7Glmy/uWx6+lH68vep0Ldy64VacGXntNTabZsAEaNlSBOw1j\n8GAVFCljRgMLNYDRo9W6gmCdBt0ZrDS0ZzdwSYMPV33IqZun8H/T3yOTx9tsalxwyBDo3x8+/lgt\ndEoII7eOZNmxZWzutJm0KXVycncTGQnDh6spptOnq1DeTnHwIDRqpHJ0ZshgiEZD+ewzCA1VHziZ\nYdT0UW0IXMD0vdMZt2McO97bQZa0nhdH/eRJlWY2IgL8/FT+38QgIry59E1Se6dm1quzoi5WjZvZ\nulXlPHjzTWUYUqZ0sKDWraF6dejd21B9hnHlisqBfPQo5M5tthq3YpQh0K4hAwgMDHz4/5ErR/hy\n45csfWOpxxiBKP0iMGuWCmvwyiuwZUvijQCoi9OvpR+HLx/mu53fGSs2BqK3vyfiKv01a8LeverV\npImDISr271fxsXv0iPUQ09s/Z05o1w6+/96h003XbwG0ITCQkPAQ2i1px6j6oyiVs5TZchLFzZvq\nyXHMGBUbqHfvhLuCYiJ9qvQsa7eMsdvHsu7EOuOEahJFjhywdi1UqQLPP6/GEBLFkCHwxRdqybiV\n+fRTmDpVZTbTeDSmjr4bwQcrP5C2i9taLqdAfGzZotYFfPSR8TPxNgdtltxjc8u5W+eMLViTaJYu\nVWH9p09P4An79qlky54yPbNlS5XYIRmBnj5qLZYeWSqFxheSmyE3zZaSYCIiRAYPFvH1FVm50nX1\nDAkcInVm1pGISBfHrNfEy5EjIiVKqPAU8U4xbdlSZPx4t+gyhC1b1GIKV+dGsBDo6aPWYeHKhfRY\n1YP5red7zLjA5cvKb7xpE0yeHOj8zJI46F+zPwCjto1ySfme7uN1p/5SpWDHDjh8WI0D3b4dy4H7\n9sGff0K3bvGWaZn2r1EDsmYFf/9EnWYZ/SaiDYGTRNgiGLZlGJ9V+4yqz1Q1W06C2LIFKlVSg8K/\n/w7Zs7u2Pu8U3sx5bQ6Tdk9i+1lPTcybdMiaFdasgfz54aWXICgohoO++w4++cR9uQaMwMtLDW7p\nfAUejdm9LIcYs22M1J1Z97G4/FYlMlJk5Ei1+nTNGvfXv+LoCinwXQG5fl+nG7QCNpvy/OTJ80Ro\nikuXRHx8VCIETyM8XCXE2LnTbCVuAZ2PwHyOXztO9enV2d11N4WzFjZbTpzcuQPvvAOXLsGiRepp\n0Ax6renFhTsXWNxmsV5fYBFWr1bBRKdOhVatgKFD4dw5+PFHs6U5xoQJ8Mcf6kJP4uh1BCZjExvv\nrXiP/9X+H2cOnDFbTpxEpTzMlQsCA582Au70kY5pOIYT108wfd90w8r0dB+v2fqbNVNTTD/6CKZO\nDFPpJz/6KMHnm63/Kd59Vw1+nTqVoMMtp98EtCFwkCl/TkFE+OiFhP9gzMDfXy0s+uQT9YCXJo25\netKmTMvcVnPpt7EfZ25Z24AmJypVUrGkjo1cyn+pSyJly5ktyXEyZYL33lMxUjQJwkp9c49xDQXd\nDOL5ac/zx7t/UCKHA0tv3YAIDBumbv6LF1svcfzIrSMJCApg3dvrtIvIQoRXqU7/m19wtcarTJsG\nqVKZrchBTpxQI+Fnz0Lq1GarcRnaNWQSIkJX/670qd7HskYgJEStEl61Ss0AtJoRAOjzUh9uhN7g\n570/my1FE8WePaS6coFBf7Xg8mV49VV1LXkkRYtCyZLqR6CJF20IEonfPj9uhNygd/VHAbis5GO8\neBFq11bhIQIDIU+e+M8xQ3/KFCmZ2XIm/Tf1d9pFZKX2dwTL6J80CT78kAyZvVm2DHx8oGnTONYa\n2LGM/id57z0VfjUeLKvfjWhDkAgu37vMlxu/xK+lHylTOBrK0XXs26cGhVu2hDlzYs8bYBXK5CrD\nZ9U+o8uKLniKWzDJcvkyrFihbp4ol9Avv6iH6gYN4No1k/U5QuvWKmCeoYkZkiZWcs5afozg3eXv\nkjVtVsY1tt6ClWXLoGtXNeHj9dfNVpNwImwRvDj9RbpV6kbXyl3NlpN8GTYMzpyBadMe2ywCffuq\nBWjr1yesh2kpunWDwoXhyy/NVuISjBojsBKmLcpICNvPbJe84/LKrdBbZkt5igkTVALzPXvMVuIY\nh4MPS44xOeT0zdNmS0mehIWpC+jgwRh322wq/WXRoiJBQW7W5iw7dqj4Qx4WCDKhoGMNuY9IWyQf\nrfmIMQ3GkDlN5qf2m+VjtNlUcqapU1UPuHJlx8ox20daJlcZer3Qi15rejl0vtn6ncV0/atWqafm\ncjFPGfXyggEDoGdPNf705PR80/XHRdWqys+1bVush1hav5vQhiABTPtrGhlTZ6R9ufZmS3lISAi8\n8YZKOvLHH1CggNmKnOOLl77g6NWjLD+63GwpyQ8/P7UIKx569YI+fVQO65MnXS/LELy81Gfz8zNb\niaWxkm/J3tOxFlfvX6X096XZ+M5GyuW2xiKba9dU5MgCBWDGDPMXiRlFwKkAOi3vxN8f/E3G1BZL\nkp5UuXRJhSQ9ezbBiemnToURI9Ti3aJFXazPCIKDVaq9M2cg89M9ek9GryNwE/039qd9ufaWMQJn\nzqhouzVrqplBScUIANQtVJc6BeswKHCQ2VKSD3PmwGuvJdgIAHTvDl99BfXqwb//ulCbUeTODXXr\nJovYQ0kBs8ddnmL3ud2S55s88SabCQgIcIuew4dF8ucX+e47Y8t1l/6EEHw3WHKOySn7L+5P8DlW\n0u8Ipum32URKlRLZutWh03/6SeSZZ0R++SXAWF2uwN9f5MUXY9zlydcPerDYtYgIvdb2YmT9kZZI\nNrN9O9SvD6NGqbhBSZVcGXIxov4Iuq/qjk1sZstJ2uzeDRERKhSDA3TpAgMHqgkLCYzvZh5NmqjE\nC//8Y7YSS6LHCGJh8d+LGbltJHu67SGFl7n2ctUq6NwZZs9W13NSxyY2as2oxdvPvU3357ubLSfp\n0r07PPss9O/vVDHff69ywWzebF548wTRuzekT6/CbCcR9DoCFxIaHiqFJxSWjSc3mi1F5sxRiWSS\nSZ6NhxwKPiQ5xuSQ4LvBZktJmty7J5I1q8jZs4YU9803arr+hQuGFOcadu1KcmsK0K4h1/HDnh8o\nlaMU9QrVS9DxrpqHPHWqWtW5aZOaDu0qrDiPumyusnR4rgNfbfoq3mOtqD8xmKL/t9/URfXMM04X\nFRgYSO/e0LGjcl9evmyAPldQpYpyhe3f/9hmT79+jEAbgie4EXKDEVtHMKbhGFN1jBmjXlu2QOnS\npkoxjf/V/h/+x/3568JfZktJevj5KX+jgQwYoDKcNWwIN24YWrQxeHmpxTcLF5qtxHJYybdk7+mY\nS5/1fbj14BbTWkyL/2AXIAJffw1Ll6rE8vnymSLDMkzfOx2//X5s67xN5y0wiqAgeP55OH/e8PnH\nImrweNcu2LABMmQwtHjn2bdPWauTJ5Vh8HD0OgIXcOrGKfz2+zG4zmBT6rfZ1IygVavUwFtyNwIA\nnSt25kHEA+Ydmme2lKTDrFkqYYULFqF4eamB4xIl1P32wQPDq3COChVUyIk//zRbiaXQhiAaAzYN\noNcLvciTKXEhFgPXr1fT0lasUL+C7t1VpviRI1WuyFOn1F0+Dmw2ddru3RAQoPILuwsr+0hTeKVg\nYtOJ9P29L3fD7sZ4jJX1JwS36heBmTMNdQs9qT9FCvjpJzVBp0MHiIw0rCrn8fKCtm0fcw95+vVj\nBNoQ2Pnz/J9sPr2Zz6t/nvCTDh5UN/xXXlFJAH78US39LVtWrWS8fh2mTFGRujJnVvGh9+59qpjI\nSBUG/uhRFerXx8fAD5YEqJ6/OnUL1WXE1hFmS/F8duxQd+iKFV1aTcqUMH++CofSvbuyP5ahbVu1\nyjiehzONOZg6Dav+rPry454f4z/QZhPZsEGkUSORPHlERowQuX49/vOuXxcZP14kXz6Rpk1Ftm0T\nEZHwcJH27UXq1hW5e9fJD5GEOX/7vGQfnV1OXDththTP5sMPVUxpN3H7tsgLL4h88YXbqkwYpUs/\n/A16Mhg0fdRKoyX2z+V+Ak4F0NW/K/98+A+pvOPI1n3iBLz1Fty9C59/Du3bJ97P+uCB8tGOGoUt\n/7P0STuZw5Tlt9/Ug5omdkZtG8WOcztY3k5HKHWIiAg18LR9OxQp4rZqr11TsbG6doVPP3VbtXEz\nZAhcvQoTJ5qtxCn0gjKDsNlsUn16dfnlwC9xH7h4sUjOnCLffy8SGfnYLkdilYTdD5cfKkyVm6lz\nyINZ8xN9vpF4SqyV0PBQKTS+kGw6uemx7Z6iPzbcpn/tWpGqVQ0vNiH6T59WcYnmzTO8esc4elTE\n11ckIsKjrx/0gjJjWHNiDTdDb/Jm2TdjPiAsDD7+GL74QuXr++ADNRrmBOHh0PatlKx65n3Sbd1A\n6sED1KMixkPZAAAgAElEQVRSeLhT5SZ10qRMw6gGo+i9vreOQ+QI8+ap2UIm8OyzsHq1mhX3+++m\nSHicEiVUVNKtW81WonkCt1tTm80mFadWlCV/L4n5gKAg5eBs2TJh4wAJICxMpHVrkebNRUJD7Ruv\nX1cbatSw+Bp987HZbFLt52oya/8ss6V4Fvfvi/j4mH59bd6sOtZ795oqQzFihEj37marcAp0j8B5\nfv3nVwBalWr19M6TJ1Xg/zZt1HL8rFmdri88XA0rhISoBWMPhxeyZlVTTxs2VMvgjx51uq6kipeX\nF+MajWPApgHcD79vthzPYdUqtYjM5OzztWqp0Ckvv2yBLGdt26ofYkSEyUKSBk2Ao8C/QN8Y9tcB\nbgH77K/Ygse41ZJGREZIqcmlZNXxVU/vPHtWpFAhNR6QABLiYwwPF2nTRk0YCgmJ48CZM1XSATdm\nCfdEH2mbRW1k6OahIuKZ+qPjFv2tWolMn+6Soh3RP2WKiv925YrxehJFpUoSYHSCDzeCRXoE3sBk\nlDEoDbwJlIrhuM1ARftrmJN1GsK8Q/PImi4rTYs2fXxHcDA0aAA9eqjxAAOIjFQLa+7cgV9/hbRp\n4zi4Y0c1I6lBA5VGUBMjoxqMYvzO8Vy6q9soXm7eVI75VjH0fE2iRw8l59VXITTURCEtW8aZ2F6T\nMF4E1kZ7/6X9FZ06gH8CynKbFQ2LCJPCEwpLwKmAx3dcuyZSrpzIwIGG1RUZKdKxo0iDBvH0BJ5k\nyBCl5do1w7QkNXqv6y1dV3Q1W4b18fMTee01s1U8RWSkSLt2qqf8xEQ893HggEjBgh4bmhqL9Ajy\nAWejvT9n3xYdAaoDB4DVqJ6Dqcw+MJuCPgWpU7DOo423b6usL40aqbRLBiCinnxOnYJly+LpCTzJ\nV1+pMYNmzdS6Bc1TDKg5gGVHl3H48mGzpVib+fNNmy0UFylSwIwZcPEifPnk46O7KGfPRX7okEkC\nrIGzCxFao9xCXe3v3waqAj2jHZMJiATuA02BCUDxGMqSjh07UrBgQQB8fHyoUKECderUAR7FA3H2\nfY1aNSgxuQS9cvWivG95td9mI7BGDciWjTr+/uDllajyo8cqidofEBDI5Mlw4UId1q+Hv/5yQK8I\ndebOhTNnCOzbF7y9DW+P2PQbWb4r3x9Ie4B5/vMY3XC0JfRYrv1LloRSpQhcsADSpLGk/uvXoUKF\nQFq1gvHjjdcXr/7XX4dMmaBjR0tcD3G9j/o/KCgIgFmzZoEFFpRV43HXUD9iHjCOzikgWwzb3dKV\nmrV/ltSeUfvxjaNHi1SrJvLggUNlPjlYZrOJ9OkjUqmSyI0bjul8SESESP36Il995WRBsePJg62h\n4aHi+6HvU4vMPAmXtv+ECSIdOriufDFG/3//qYgt/v7O60ksAd99p36sHggGuYacJSXwH1AQSA3s\n5+nB4tw8slgvAEGxlOXyRouIjJBiE4s9noJy82aVC/L0acPqGTRIufevXjWowEuXRPLmFVm3zqAC\nkxbzDs6TKtOqiM1D/bwu5cUXRVavNltFgti5U60x2L/fzRWHh4tkz27oPcBdYJExggjgI2AdcARY\nCPwDvG9/AbwOHEIZifFAOyfrdJiFfy8kV4Zc1C1YV20IDlYT+2fMUEsfDeDbb2HuXJWUI3t2Q4pU\nKyDnzlUzis6fN6jQpEPbsm2JsEWw9J+lZkuxFmfPwrFjagaaB1C1KkyeDC1aqHEDt5EyJTRvrtby\naEzHpZYz0hYppSaXkrX/rlUbIiJE6tUTGTDA6bKjusbTpokUKODCB4uhQ0Vq1lRPMAbiya4hEaV/\n/Yn1UmxiMQmLCDNbTqJxWft/951I586uKTsaRusfNkykcmX3ReMNCAgQ+fVX5YL1MLBIj8BjWHpk\nKZnSZKJRkUZqw+DBalrPYGOykS1YAIMGqZ6AQZ2Lp+nfH9KlU7ksNY/RsEhDCvgU4Oe9P5stxTos\nXqxWxnsY/ftDmTIq1YfbUgY0aqSyQlky2XLywmVWM9IWKeWmlJOVx1aqDQEByud+8aIh5fv7q2GG\ngwcNKS5uLl9WYRxXxbAiOpnz14W/xPcbX7nz4I7ZUszn7FmRbNkcngBhNqGhqvPbt68bK23RQmTO\nHDdW6DzoHkHCWX50Oam8U9GsWDMV6KdrV/jhB/D1dbrswEB4913lXoyakuxScuaEOXPUZ7h50w0V\neg6V8lSibsG6fLfjO7OlmM+SJSpzXurUZitxiDRp1Cr8JUvUEJ5bePVVWK5zXZiNSyxmVITR3/75\nTW3o21fkjTcMKXvPHjXLYdy4AEPKSxTdu4t0NWZVbVIYI4jiv+v/SfbR2eXy3cvmCUokLmn/6tXd\n1mt05fVz5Ij6jbkymdhD/cHBIlmyRAsLbH3QPYKEse6/dYTbwnmlxCsqX/CMGYZkJTp2TEVQnDYN\nKlUyQGhiGTVK5UfQibcfo3DWwrQv157hW4ebLcU8zp1TEWw9ZLZQXJQqpRL6vf46nD7t4spy5VLd\n+k2bXFyRJi5cYjFrzaglcw7MUTNtKlZU0T2d5MwZNTvIz895fU6xfLlI0aIq1rzmIZfuXJJso7NJ\n0A33RXC1FOPHi3TqZLYKQ/n2W5HnnhO54+rhn7FjRd5/38WVGAe6RxA/289u58ytM7Qt2xbGjYMc\nOdRUBCe4elVNMOjZEzp3Nkioo7zyiuqODBlishBrkTtjbno834PBm42ZEeZxeOhsobj45BOVquPt\nt108k6hlSzXgZ1L+dI0LegQt5rWQ73d/L3L8uFo5ePKkU+XduSNSpYpIv36PbzfVx37pkkiuXE6l\nfEpKYwRR3Ai5ITnH5JQjl4+4X1AiMbT9z51z+2whd10/Dx6omURP/v6c5Sn9xYpZJIVa/KB7BHFz\n+PJhdp/fTefynaBbNxgwAAoVcri8sDAVP718eRhuJfdz7twwejR06aIzLUXDJ60Pn1f/nK8CYsuD\nlERZulQtzfXQ2UJxkTq1+njz56t1Oy6jeXOV0S0ZYXrUumjYDZwxdPitA6VzlKbfhcJqYHXPHvD2\ndqgsm011SUNCVK87ZUrDZBqDiPJXNW+u+tAaAO6H36fYpGIsa7uMKvmqmC3HPdSoAf36qWshibJ/\nv4rQvn49VKzoggo2bFCh6Ldvd0HhxuLl5QXWuo87jWHdpZPXT0q20dnk5vWLalQ3MNDhsmw2kV69\nVJfU0mOyR46I5Mhhgdx/1uKHP3+QBrMbmC3DPZw7J5I1q8cuIksMixapn3ZwsAsKDw0VyZzZI35L\naNdQ7IzbMY5ulbqR5Qc/qFwZatd2uKxRoyAgQI0fpUsX8zGBVpjCWaqUSj4yaFCiT7WEfieIS/97\nFd/j1I1TbDpl3SmBhrW/SW4hM66fNm1UL/3115Xb1hme0p8mDdStC+vWOVewB5HkDEHw3WDmHZrH\npwXbqVCgY8Y4XJafH/z4I6xdCz4+Bop0FQMHwqJF8PffZiuxDKm8UzG07lD6beyHJPWZIEuXqjtj\nMmHIEPW7dIk3NJmNE1jJtyRG/FAHbBzAjdAbTPn1gYoD7aAhWLUK3nsPNm+GEiWcluU+JkxQC83W\nro3/2GSCTWxU+rESg+oM4tWSr5otxzUEB6sL9dKlROZE9Wxu34Zq1eDjj+H99+M/PsGcPw/PPQeX\nLzs8tugO9BhBDNwOvS3ZR2eXs4ErVBS4mzcdKmfnTuVu37HDaUnuJyxMpEQJj0lG4i78j/lL2Sll\nJSIywmwprmHqVJUJPhly/LiaQf3HHwYXXL68a2NbGAB6jOBppu+bTr2CdXlm4DgVXjpLlkSXcfy4\nij3l56eeNBKCpXzsqVKpxXOffQbh4Qk6xVL6HSAh+psXa07G1BlZcNiV8w4dw5D2X7IEWrd2vhwH\nMPv6KVZM/V7feAMuXEj8+bHqb94cVq92SpunkGQMQXhkON/t/I7ht6vAtWvKr5NIgoOhaVPle2zR\nwgUi3UWzZpA/P0ydarYSy+Dl5cWIeiMYGDiQ8MiEGUiP4do1FUu/aVOzlZhG8+bQvbsxg8cPadYs\n2YwTWMm3ZO/pOMb8Q/P5efdUNo6+qPLdNWqUqPPv3IE6dZQBcGDijfU4fBjq1VPBx7JlM1uNZWj4\nS0PalG5Dt8rdzJZiHDNmwMqVarA4GWOzKUOQK5dBz0CRkaqwAwfgmWcMKNB4jBojSBI9AhFh7Pax\nfHupvPrCEmkEwsNVt7JSJTXxJklQtqzycY0da7YSSzG83nCGbhlKaESo2VKMY+lS09xCViJFChWp\ndMsW+OknAwr09obGjdXkiyROkjAEAUEBRIbc57lpy2HYsESdK6K6lClSqFw1Xg7YVrN9pLHy9dcq\nTvalS3EeZln9CSQx+l/I9wKV81Tmhz9/cJ2gROJU+9++re58L79smJ7EYqXrJ1Mm+O03FVFm586E\nnROn/mQyjTRJGIKx28fyw8XKeJUtC9WrJ+rcIUNUz2/hQguGjnCW/PlVtNURI8xWYimG1h3KqD9G\ncefBHbOlOM/KlVCrFmTObLYSy1CiBEyfrhadBQc7WVjjxmpF6YMHhmjTxI9D06cOXjoohUf4ii1P\nHpG//krUuX5+IgULGpa62JoEB6tolEHJNDZ/LLRf2l6Gbh5qtgznadXKAokxrMnXX4vUrq1SkTjF\niy+KrF9vhCTDwaDpox4/WNxpWSfeWR9MvcsZ1BS6BLJ+PXTooBaMlSyZ6Go9i6++gosX1WOSBoAT\n109Q7edqHO95nGzpPHQw/d49yJMHTp1Siyc1jxEZqTxmpUurGdUOM2yYSkQyfrxh2oxCDxYD52+f\nJ+DAcuos2aPWDSSQ/ftVnJKlS40xAlbykcbI55+rYEnHjsW42/L648ER/UWzFaVVqVaM/cP8wXSH\n23/NGqha1XQjYNXrx9sb5s6FZcuU6zc24tXftGmSjzvk0YZg4q6JTDlRkhSNm0CZMgk65+xZNUV0\n8mQVsTdZ4OOjFpglmSlRxvB1ra+Ztncal+7GPZhuWfRsoXjJlk0100cfqRnVDlGxolqr4fKkyebh\nsa6hu2F3qTDiWY5NAu9du6Fo0XjPuX1b3fw7dIA+fZyR6oHcu6faaM0aqFDBbDWW4bN1nxEeGc6k\nZpPMlpI4QkPB11etE/H1NVuN5fnlFxg6FP7806GAA8qFUKuWSnJlIZK9a2jGvhmMOZgb71atE2QE\nwsPVYpMaNZSnJNmRIQP076+mlGoe8mWNL5l3eB5BN4PMlpI4NmxQQdG0EUgQHTqo5UUdOzqY87hJ\nkyQdyNEjDUGkLZIZAd/SIuCCmjAcDyLQo4cK0z5xomNrBeLCqj7Sp+jWTc2V/fPPxzZ7jP5YcEZ/\nrgy5+OD5DxiyeYhxghKJQ/otFHLaU66fb79V00mfXGOZIP2NGsGmTQmO3+VpeKQh8D/uT/cd4aR8\ntRUULBjv8SNGwL59Ks9pklsrkBjSpIG+fVUfWfOQ3tV743/cn6NXj5otJWGEhanB/1atzFbiUaRO\nrVLNjh+v7umJIlcuKFIk4avUNA6T4Lmzjb5/UUKyZhI5dizeY+fOFXn2WZELFxydqZvECAkRyZtX\nZO9es5VYipFbR0qbRW3MlpEw1q4VqVbNbBUey++/i/j6ipw9m8gT+/UTGTDAJZocheQahnrPhT3U\nXvMPqRs1g+LF4zx22zaVvWjVKjXdWoNKWtKnT6JDcSR1er7Qk61ntrLv4j6zpcSPni3kFPXrQ69e\nauVxoiKVJvFxAquQIAvYad4bcjdbJpGDB+M87vhxlZtm3Toj7G7cBAQEuL4SI7l3Tz0S2dvQ4/Q/\ngVH6J+2aJE3nNDWkrMSQKP3h4SI5c4qcPOkyPYnFE6+fyEiRV14R+eijROgPCxPJkkWt1rcIJMce\nwdlbZ8k935/UL9WCcuViPe7aNRUraujQRAciTR6kT6/WFQwfbrYSS9G1Ulf+ufoPW09vNVtK7Gzd\nqmJIFSpkthKPJipS6dq1iRgvSJVKJbXfsMGl2pI78Vq/fis/kxvZM4r8+Wesx4SGitSoIdK3r5F2\nNwly547K73fkiNlKLMXMfTPlpekvic1mM1tKzHz4ocjw4WarSDLs36/S0v79dwJP+OEHkQ4dXKop\nMZDcegR3w+4S6vcjqStUhuefj/EYEZWYzNdXB9yMl4wZVcZv3St4jLefe5sboTdY/a8FUxTabPDr\nr5aZNpoUKF8exoxRTXr3bgJOaNxYBSpzaDGCdfEYQzB7z3T6bhPSD479xjV4MJw4AbNnq66fu/CU\nedRP8dFHsG4dgXPmmK3EKYxsf+8U3gyvN5wBmwZgE/f82BOsf8cOFVconkkS7sZjr387hQoFUr06\ndO2qHibjOVgtTT5wwC3a3IVHGAKb2Dj5wwjSFi4OL70U4zFz5iif3/LlkC6dmwV6KpkzQ8+eqvE0\nD2lZoiVpU6Zl4eE4IpWZgZ4t5DImTVLROr7/PgEHN2mS5IPQmUmsfjD/oyvkRN60YluzJsb9W7ao\niRSHD7vKE5eEuX5d5yuIgY0nN0qRCUUkLCLMbCkKm00tiDl0yGwlSZYTJ9R9ZOfOeA5ctUolOrAA\nJKcxgh0/fk3WTLnwatz4qX0nTqj5wHPnJjgAqSY6WbOqgZVvvjFbiaWoV6gehbIWYvo+i+Rw2LNH\nrQHRF7nLKFJE5Tp+4w2VfiBWateGv/6CO0kgw50dyxuCQ8GHaLHsHzJ/NfSpIEHXr6tpokOGQMOG\nJgnE832kgVWrKvfQ5ctmS3EIV7X/iHojGLplKPfD77uk/CgSpD8qtpDRgbIMwOOv/2j6W7ZUhqBD\nhzjGgzNkgGrVHIhTYV0sbwhWzhpAyZD0pGzX/rHtYWHKXdqiheUiw3oe2bNDu3YwYYLZSixFlXxV\nePGZF5m0y+QQ1SIq+54eH3ALI0aoGURxzjyMmj2URLDS44Xd5fWIK/eusPuFvNR6dyiZen8Z7UDl\nzbh+XT0oeXu7W2oS5ORJeOEF9VcnQn/IsavHqDGjBsc+OmZeSsv9+1WAuf/+s2SPICly/ryapT53\nLtSrF8MBBw8qw/zvv27XFp1kkY9g6a/DqXk+JZl69Hps++jR6rcxd642AoZRuLB6yvnhB7OVWIoS\nOUrQqmQrRm0bZZ6IRYuUv0IbAbeRL59KZvP223DhQgwHlCunug0nT7pdmyuwrCEIiwwjy+SfCOn2\nrgqJYGfpUjXFy99fueqsQJLxkX75pYrRGxJiqp7E4ur2H1hnINP3TefsrbMuKT9O/SKPDIFFSTLX\n/xM0aKDymLRrBxERT+z08lLxa5JIuAnLGoKVm36k+d9h5O77KGHIn39C9+5qrUC+fCaKS6qUK6f6\nwzNmmK3EUuTNlJcez/fgf4H/c3/l++zRUCtWdH/dGgYMUM+hMea/atQoyawnsFJf8+EYgYgwp0ke\nXvKtSuFZywGVdL5aNZgyRY3sa1zE9u3w1lvK95mss/g8zq3QWxSfXJzfO/xOudyxBzw0nC+/VMvk\ndcwU07h6FSpVUp6IFi2i7QgOhpIl4coV034rSXqMYNfhdby87QoFB48H1HTdl1+GTz/VRsDlVK8O\nzz6r0rlpHpIlbRb61ehH/0393VepCCxcaGm3UHIgRw71c+jSBYKCou3InVtlSNy92yRlxmFJQ3Bi\n9BcE16xIioKFiIyE9u3VhJbevc1WFjNJzkfar58akY838Io1cFf793i+B4cvH2bL6S2Glhur/j17\nVH7F8uUNrc9oktz1HwPVq6ssr2+8AQ8eRNvRqFGSmEZqOUNw9sp/1PM/zDNDVG/giy/g3j3VLdOT\nJtxE48ZqOtZqC0bgNJE0KdMwrO4w+v7elyenOrsEPVvIUnz6qRqb7NMn2sYkYgishIiILOzTTI5W\nzC8iIj/+KFK8uAqHo3Ez8+aJ1KxptgrLEWmLlApTK8iSv5e4tqKo2ELxZOLTuJcbN0QKFxZZtMi+\nISREJFMmtcMESIqxhu6H3aPsL+vINGAIGzfC//4HK1eqcDgaN9OmDZw7pwaPNQ9J4ZWCsQ3H0vf3\nvjyIeBD/CY6ye7earlK2rOvq0CQaHx/VUfvgAzh+HBX/6aWXPD7chKUMQeC0/qRPlZ47ZTrSvr0a\nJytWzGxV8ZMkfaQpU6pBmdGj3a4nsbi7/RsUbkDJHCX5/s+ExCyOnxj1e5BbKEle/3FQubJKg9um\njX3JTRJwD1nKEGSdPJ2rXXvwcgsvRo1SQf40JtK5M+zcCUeOmK3EcoxtOJaR20Zy7f414wu32WDx\nYj1byMK8/74KBNurF4/WE3jI5IqYMOJxowkwHvAGfgZieoScCDQF7gOdgH0xHCMXfVLSvuxdXngp\nDaNMXNGvicawYSrGjV5k9hQfrPqA1N6pGd9kvLEF79ih5ir+/bex5WoM5c4dqFIF+vcT3un/DAQG\nut2FYZV1BN7AZJQxKA28CZR64phmQFGgGNANiDWYzdIyLcmSI41eO2MlPvxQLeU+65rwCp7MoDqD\nmHNwDsevHTe2YIuHlNAoMmVSHbfen3tx4wXPdg85awheAE4AQUA4sAB4csnXK8As+/+7AB8gd0yF\nzb83mTlz3Jtv2AiStI80a1blIvruO7fpSSxmtX+uDLnoU70PfX/v61Q5j+mPjPQ4Q5Ckr/94KFcO\nxo6F4bsbEbE6+RqCfED0R8Vz9m3xHfNMTIUt8Pe1TCA5TTQ+/RRmzlRxvzWP8XG1j9l3cR+bgzYb\nU2BgoFqxWurJjrXGqnTqBOG1G/BgQwASFm62HFNoDfwU7f3bwJNZPPyB6BnnfwcqxVCWxPQaOHCg\niIgEBARIQEDAw/mzHTt21Me78/gmTSSgUyfr6LHQ8fMOzpPinxWXjZs2WkKPPt68499p1S7G4416\nHxAQIAMHDpSOHTtG1+A0zg4yVAMGocYIAPoBNh4fMJ4KBKLcRgBHgdpA8BNliXjwqHuS5+hRNY3r\n5EnrxP+2CCLCS34v0aVSF96t+K7jBYWEQN68apA4b17jBGpcyrX713hx+ot8+sJn9Kja3a11W2Ww\neA9qELggkBpoC6x44pgVwDv2/6sBN3naCHg0ycJHWrIk1KgB0y2SzD0aZre/l5cXk5pOYsCmAdwM\nvZno8x/q9/dX01A8zAiY3f7O4oz+0IhQXl34Kq+VfM3tRsBInDUEEcBHwDrgCLAQ+Ad43/4CWA2c\nRA0q/wh84GSdGrPo2xe++QbCk6cfNC4q561Mi+ItGBw42PFC5s5VIcA1HoFNbHRe3pk8GfMwssFI\ns+U4hZWWLWrXkCdQvz507AjvvBP/scmMK/euUGZKGQI6BlAmV5nEnXz1KhQpoqbp6pzRHsGAjQMI\nCApg4zsbSZcqnSkarOIa0iQ3vvxShZ2w2cxWYjlyZsjJ17W+ptfaXomPTrp4MTRrpo2AhzB973QW\n/r2Q5e2Wm2YEjEQbAgNIVj7SBg0gXTrlz7YIVmr/HlV6cOXeFZb+szTB5wQGBnq0W8hK7e8IidW/\n7sQ6BmwawKr2q8iZIadrRLkZbQg0icPLS/UKRo7Ek2OruIqUKVIyselEeq/vzf3w+wk76cIFOHZM\n5YHQWJr9l/bT4bcOLHljCSVylDBbjmFYfowgIiKCBQsWcPLkSWzaHfEUXl5e+Pj4UL9+fcq6K2Rx\nZCSULg3TpunIgLHQdklbSmQvwZC6Q+I/eNgwuHQJJk92vTCNw5y9dZbqftX5ttG3tCnTxmw5gHFj\nBJY3BBs3buTKlSu0bt2aVKlSmSDL2kRGRnLhwgUWLlxIkyZN3GcMpk9Xfu21a91Tn4dx9tZZKv5Y\nke3vbad49uKxHyiijOqMGVCtmvsEahLFrdBb1JhRg47lO/J59c/NlvOQZDNYvG/fPho3bmxpIxD0\nWEZr9+Lt7U3+/Plp27YtGzdudKgMh3y8b78Nhw/D3r0O1WkkVvRR58+Sn69qfUX3ld3jHjjeu5fA\n27ehalX3iTMYK7Z/YohPf1hkGK0XtaZ2gdr0ftGiidOdxPKG4N69e2TJksVsGZYnb9683LyZ+MVM\nDpMmDXz+OQwf7r46PYyeL/Tk9oPbzDowK/aDfvlFTcn1gAQ0yRERocuKLqRPlZ4JTSZEPYEnOSxv\nCESEFBYPR1qwYEGzJeDt7e1wQvU6deo4VmnXrrBtm+lx8x3W72K8U3gzrcU0+v7elyv3rjx9QGgo\nzJ1LnUGD3K7NSKza/gklLv39Nvbj3+v/suD1BXin8HafKDdj7TusxtpkyKAik+oEErFSKU8l3i73\nNr3Xx+BS+O03qFABChd2vzBNvEzaNYnfjv6G/5v+pE+V3mw5LkUbAgMwc4zACJzy8X7wgUrI8e+/\nhulJLFb3UQ+uO5gtp7fw+8nfH9/x00/Qtavl9cdHUtS/5MgSRv0xinVvryNH+hzuF+VmtCGwOIcP\nH6Zx48bkzJnTmi6yzJlVFjOdWzRWMqbOyPfNvqf7yu6EhIeojSdOqMH2lk/mcdKYzZbTW/hg1Qes\nfHMlBX0Kmi3HLVjwzuJ5uHKMIHXq1LRr147pLoz66bSPt1cvWLYMTp82RE9i8QQfdfPizamctzKD\nN9uD0v38s4rXlCaNR+iPi6Sk/1DwIdosbsO81vOomKeieaLcjDYETlCwYEHGjRtH+fLl8fHxoV27\ndjx48MDQOooXL07nzp0pXbq0oeUaSrZsKtn62LFmK7E0E5tMZOb+mew8uVVlfOvSxWxJmmicunGK\npnObMr7xeBoUbmC2HLeiDYETeHl5sXjxYn7++WdOnTrFwYMHmTlzZozHbtu2jaxZs8b62r59u3vF\nR8MQH+9nn8G8eXDxovNlJRJP8VHnzpib75t9z5wRbYksVkTleMBz9MdGUtAffDeYRnMa0b9mf94s\n96bZktxOSrMFOItR03odDZvTq1cvcubMSdasWWnRogX79++P8bgaNWpw48YNJxRanNy5oUMHGDdO\n5SzQxEjr0q0purcXc+qlp6PZYjQA3A27S+M5jenwXAc+qJI806V4fI9AxJiXo/j6+j4cI0iXLh13\n7xjtO2MAABR0SURBVN415oO5EcN8vH36gJ8fBLs3AZ1H+ahPn6bcmVCG5fyHDf9tADxMfwx4sv6Q\n8BDGnB9DrQK1+LrW12bLMQ2PNwRWIq5Vh1u3biVTpkyxvv744w83KnURzzyjQimPHh3/scmV6dNJ\n0f4tprw+g/dWvMeNkCTcS7Q44ZHhtF3SlvxZ8jO+yfgku2o4IWhDYABR6wjiWtlbs2ZN7ty5E+vr\npZdeivXc0NBQwsLCAHjw4IHhA9KG+nj791cDoRcuGFdmPHiMjzoiQvWYunalYZGGtCzRkl5re3mO\n/ljwRP0Rtgje/u1tBKFzls6k8Eret8Lk/ekNxsvLy/CniqCgINKnT0/ZsmXx8vIiXbp0lCpVytA6\nDCVPHujcWa82jok1a1SvqVw5AEY3HM3u87sJOBVgsrDkhU1sD3tji9ssJqW3xw+VJikkJgYOHBjj\nds3TWKatgoNFsmYVOX3abCXWon59kdmzH9u05/weyTkmpxy7eswkUckLm80m7/u/L7Vm1JJ7YffM\nluM0gCHZoXSPQGM8uXJBt246Mml0DhyAf/6Btm0f21w5b2WG1h3K64teT3hGM41DiAifrvuU/Zf2\ns/LNlUk+flBi0IbAAJJ1rKHY6NMHliyBkyeNL/sJPMJH/e230LMnpE791K7id4pT3rc8H6z6wOEI\nsmbiCe0vIvTb2I8tp7ew9u21ZEqT6eE+T9DvarQh0LiG7NlVDKKhQ81WYj4XLoC/v+olxYCXlxdT\nm09lz4U9+O3zc7O4pI+I8MWGL1h7Yi3rO6zHJ62P2ZIshx4lMQAr5CNwBpfNA//sMyhWDI4fh+Jx\npGt0EsvPY//+ezWtNlu2GHdH6V/yxhJqzqhJ5byVqeBbwY0CncPK7R/lDtp6ZiubOm4iW7qnvwMr\n63cXukegcR0+PvDxxzBwoNlKzOPePZg2TbVDPJTMUZJJTSfx+qLX9foCA7CJjZ5rerL97HZ+7/B7\njEZAo9CGwAD0GEEcfPIJbN4Mf/7psios7eOdNQtq1ICiRWM9JLr+dmXb8UqJV2i9qDVhkWFuEOg8\nVmx/m9josbIHey/uZUOHDWRNlzXWY62o391oQ6BxLRkzwuDBKr+xBw6EOoXNBt99p1xkiWBsw7Fk\nSZuFLiu6eOTgsdmER4bTeXlnjlw9wrq315Elrc55Hh/aEBiAHiOIh86d4do1NWDqAizr4125ErJm\nVT2COHhSv3cKb+a2msvRq0cf5S+wMFZq//vh93lt4WtcuXeFtW89PjsoNqyk3yy0IdC4npQpYcwY\n+OILCA83W437GDdO9QYcWG2ePlV6/N/0Z/aB2czcP9N4bUmQ6yHXafhLQ7Kly8bydsvJkDqD2ZI8\nBm0IDMCVYwSzZs3i+eefJ0uWLOTPn5++ffsSGRlpaB1u8ZE2barCK/z0k+FFW9LHu3MnBAVB69bx\nHhqb/twZc7P6rdX0/b0vG09uNFafgVih/c/dPketGbV48ZkXmfnqTFJ5p0rwuVbQbzbaEFickJAQ\nJkyYwLVr19i1axcbN27kG0+M9+/lpfIUDBkCt2+brcb1fPUVDBgAqRJ+Q4qJkjlKsuj1Rby59E12\nn99tkLikxZErR6jhV4OO5TvyTaNvkn0AOU8nxlgalomfEwMFChSQb775Rp577jnJkiWLtG3bVkJD\nQ11a57fffistWrSIcZ+V2+ohHTuK9O9vtgrXsmmTSJEiImFhhhXpf8xfco7JKTvP7jSszKTA6uOr\nJeeYnDJ7/+z4D06CoGMNmU9Uqsp169a5LVXl5s2bKVu2rIGfws0MGwZTp8LZs2YrcQ0iqjcwaJDT\nvYHovFz8Zfxa+tFifgt2ndtlWLmeiojw3Y7veG/Feyxrt4wO5TuYLcmj8fiVxV6DjQn7LAMdM6y9\nevUiNDQUX19fl6eq9PPzY+/evfj5GRuGIDAw0H0zJ555Bj74QE0nXbjQkCLdqj8+1qyBmzfhzYTn\nvU2o/peLv8yMljNoMb8FK95cQbVnqjkh1Djc3f5hkWF8uOpDdl/YzY73dlDAp4BT5Vnq+jEJjzcE\njt7AjcLX1/fh/+nSpeOCixKyLFu2jP79+7Nx40ayxRKqwGPo10/F5F+7Fpo0MVuNcdhsqjcwZAh4\ne7ukiubFmzOj5Qxemf+KpYyBuwi+G0zbJW3JkjYLf7z7BxlTZzRbUpJAu4YMIGodgatSVa5du5Zu\n3bqxcuVKypQpY7R89z8NpU+v4u98+CGEhDhdnGWe5n79VQ2Kt2qVqNMSq7958ebMfHUmLea3YNnR\nZYk61xW4q/03ntxIpWmVqFWgFr+1/c0wI2CZ68dEPL5HYCUkAakqE8umTZt46623WL58Oc8//7wz\n8qxFkyZQubIaM0gKeQsiI+F//1NrB9yQ+7ZZsWasbr+a1xa+xvFrx+lTvU+SzbkbYYtgyOYh/Lz3\nZ2a/NpsGhRuYLSnJoXsEBhC1jsAVqSqHDRvGnTt3aNq06cPeQ/PmzQ2tw7R51OPHq4BsR444VYwl\n5oHPnauiizrg6nJUf5V8Vdjx3g7mH57PeyveMy02kSvb//zt89SfXZ/tZ7ez9/29LjEClrh+TEYb\nAic4deoU9erVe/h+4MCBzJ4929A6Nm3aRFhY2GOJ7letWmVoHaaRN6+KTNq9u/KveyqhoWqW0PDh\nbukNRCd/lvxs7byVayHXaPRLI67dv+bW+l2FiDDn4BwqTatEg0INWPf2Onwz+sZ/osYhtCEwAB1r\nyAl69FDjBLNmOVyE6T7e4cOhUiWoXduh053VnzF1Rn5941eq5qtKhR8rsOG/DU6Vl1iMbv8zt87Q\nfF5zxm4fy6r2q/i69td4p3DN4DtY4PqxANoQaMzF2xt+/BG+/BKuXDFbTeI5ckSti5gwwVQZ3im8\nGd1wNNNfmc67K96l5+qeHpcD2SY2vt/9PZWnVeal/C+xp+sens+bhMbFLIw2BAag8xE4SaVK0KkT\nvPuuQ6GqTdNvs8H77yu3UL58DhdjpP5GRRpxsPtBrodep9KPlfjzvOvyQERhhP7NQZt5cfqLzD88\nn62dtzKg1oBExQtyBtOvfwugDYHGGgwdCpcuweTJZitJOH5+Kppq9+5mK3mMrOmyMrfVXIbUHcLL\n81/m4zUfc+WeNXtbB4MP0nxeczov78zHVT9mS+ctlMxR0mxZGhOJMZaGR8TPsQge31b//iuSI4fI\n/v1mK4mfS5dEcuYUOXDAbCVxEnw3WHqu7inZR2eXIYFD5M6DO2ZLEhGRf6/9K+/89o7kGptLJuyc\nIKHhro3RlVRBxxrSJDmKFlXz8Nu1g/sW929/9plKuPPcc2YriZNcGXIxselEdnXZxT9X/6H4pOJM\n+XOKKeMHNrGx9sRams9rzovTX6RAlgL82/NfelXtRZqUadyuR/MIbQgMQI8RGEiHDmqh2aefJvgU\nt+tftw527FALyAzAHfqLZCvCvNbzWNl+JWtOrOGZb5+hx8oe7Lmwx+l0mPHpD74bzMRdEyn1fSn6\nbexH61KtOfPJGYbUHULmNJmdqtsILHX9m4ReWayxFl5eMGUKVKwIS5cmKLGLW7l8Gbp2VQvhMnhe\nBqxKeSrh/6Y/526fY+b+mbRZ3IbMaTLTqXwn6heuT9lcZZ2O5y8iHLlyhBXHVrDi+Ar+ufIPTYs1\nZfor03kp/0tJdgW0J2Olb0RiejIZNGgQgwYNcr8aDyRJtdWuXdCiBWzeDKVKma1GER4ODRpAzZoq\nNEYSwCY2Ak4FMP/wfLac3sLV+1ep8WwNahWoReU8lcmbKS95MuUhU+pMMd7AI22RnLh+gkOXD3Eo\n+BCHLh9i78W9CEKL4i14pcQr1C5QW7t+XIT9O3H6Pq57BBZnwYIFDBo0iIsXL5IqVSpq1arF5MmT\nyZs3r9nSXEvVqirPcdOmsH27WoVsNr17Q8aMMNj6CeUTSgqvFNQvXJ/6hesDcPHORbae2crW01tZ\nfmw5F+9c5OLdiwDkyZiHNCnTcC/sHvfC73E//D6hEaEUyFKAcrnLUS5XOd4o8wbD6w2nZI6S+slf\n4xAxjop7wkyYU6dOuazsM2fOSHBwsIiI3L17V9566y1p27ZtjMc62lYBAQEOqnMDw4eLPPecyM2b\nsR7iFv0zZ4oULSpy44bhRVu6/UXEZrPJrdBbcvTKUTkcfFhOXj8pwXeD5c6DOxJpi7S8/vjwZP0Y\nNGtI9wicoGDBgvTs2ZOff/6Zixcv0qRJE2bNmkWaNMZ1g/Pnz//wfxHB29ubnDlzGla+5enXD86f\nh9deU0lfDGzbBLNnj0qkExgIPj7ur99kvLy8yJwmsyUGdjWuQc8acoKoVJUBAQEuTVW5bds2fHx8\nyJw5M2fOnGH06NGGfg5Lx1rx8oKJEyFrVujYMcbgdC7Vf/myGrD+8UdwQS4IsHj7JwCt3/PxfEPg\n5WXMy0F69eqFr68vWbNmTVCqythe1atXj7WOGjVqcPPmTc6dO0eqVKno06ePw3o9Em9vFeb5wgXo\n1ct9kUovXICGDZUBSmSyGY3Gk3DGEGQDNgDHgfVAbH3mIOAgsA/Y7UR9MSNizMtBfH19H64j+H97\n9x9aVRnHcfw9TNFdo2XMbLkchf2QpStK5zXlLkVWwRIH+Ud/TBzSf/0TmOEfCV7JREUyEKx/NNT5\ng1LBAnVsILGMRDfUGdbaak5lZdMMwrmd/njO3e70/jjnnnPueZ7t+4Kxc+45z+5nX6977j3nOeeZ\nNGkSd+7c8ekXe1BJSQkbNmzw/VbXRoyjnjgRjh6FCxdg2TK4fXtoUyD529shGlVzDwd8ctiI+mcg\n+c3npSNYi+oIngUa7fVULCAGvATM9fB82gtqqspk/f39FBYW+hXZLI8+CidOqBFE0Sh0dATzPC0t\nUFWlOoC1a/M+x4AQ+eblZHENkLgB+26gmfSdwaj+n5SYj8AKYKrKffv2sXDhQkpLS+nq6mLdunXU\n+nyRlVHHSCdMgJ071UVn0Sjs30+sqsq/n3/sGNTXw549auhqHhhV/xQkv/m8fCJ4HLhhL9+w11Ox\ngFPAT8BqD8+nvSCmqrx06RLRaJTJkycTi8WYP38+mzdv9vU5jFNQoCa+37tX3ZcoHgevh+Ru3oQ1\na9RtpY8fz1snIIQOsn0iOAmkmh9u3X3rmcazLgCuAcX2z7sMnE6148qVK4feXRcVFVFRUTG0LXEc\nPrFdh/WmpibKysqGttXV1fn+fPF4nHg87mj/69evk5A47pl4t5NpPfkYqZP9tVkfN45YSwvNq1bB\ntm2wYgWxLVsgEnH+8+bNgx07aN64ERYtInb2LJSU5PX3Mbb+kj/v64llne5vdpnhTuIJez2bj4EP\n0mxLecHEWL+gzI1ReUGZA01NTZbV1mZZtbWWNW2aZW3dalnd3ZY1OJi6weCgZXV1WdauXZY1fbpl\nLV9uWe3tec2cbFTU32Am50eDC8qOAXXAp/b3Iyn2KQTGAf8AEWApMHquz7fJnMXhGsp/+DC0tqo5\nhDdtgrt31dj/WbNg5kzo7lbb29rUKKS5c+HQIais1CO/oSS/+bx0BJuAg0A9aojoO/bjJcAXwFuo\nTwxfJz3XXtRQUyGCMWcOHDyolnt74eJF9XXlCsyYATU1ag6BqVPDzSmERrycLL4JLEENH10K9NmP\n96A6AYAOoML+Kgc+cfskBQUFDObrAqIc6XC8bmBgIOcT1aaPo06bv7gYYjF1Ynn7dnXTuCVLtOsE\nRm39DWF6fj9of2VxJBLh1q1bYcfQXk9PD0Vj8D44QgjvdBrfb5/7GKmxsZHe3l5qa2sZP358CLH0\nNjAwQE9PDwcOHKC6upry8vKwIwkh8sSv+Qi07wju3btHQ0MDHR0d2h8iCkNBQQFFRUUsXrxYOgEh\nxpgx0xGYoLm52eiRB5I/XJI/XCbn96sj0P4cgQnS3XHUFJI/XJI/XKbn94N0BD7o6+vLvpPGJH+4\nJH+4TM/vB+kIhBBijJOOwAc6XEfgheQPl+QPl+n5/aDTyeLzwJywQwghhEFaURfsCiGEEEIIIYQQ\nQgihq2rUXAVXgA/T7POZvb0VNbexm7ZB85K/E2gDzgE/Bhcxo2z5nwdagP94cK4IE+qfKX8n4dY/\nW/Z3Ua+ZNuB7YLaLtvngJX8n+r/230blPwecBV530TYfvOTvJPz6DxkH/AKUAeNRJ4RfuG+fN4Fv\n7eV5wA8u2gbNS36A34ApwUbMyEn+YuAVIM7IP6Sm1D9dfgi3/k6yzwcesZerMe+1ny4/mPHajyQt\nv2jv77Rt0LzkB5f1D3r46FxUuE6gH2hA9WLJaoDd9vIZoAg1j4GTtkHLNX/y/M1hjsxykr8XNZ90\nfw5tg+Ylf0JY9XeSvQVI3Fr3DDDdRdugecmfoPtr/9+k5cnAny7aBs1L/gTH9Q+6I3gS+CNpvdt+\nzMk+JQ7aBs1LflDTyJ1C/aFaHVDGTJzkD6KtX7xmCLP+brPXM/zJ0sTaJ+cHc177y4B24DvgfZdt\ng+QlP7isv5cZypxwehc5na5nSOY1/2uoiXqKgZOo432nfcjllJe7+OlwB0CvGRYA1win/m6yVwGr\nUHndtg2Kl/wQbu3Bef4j9tdC4CvUOScd5Jr/OftxV/UP+hPBVaA0ab0U1bNl2me6vY+TtkHLNf9V\ne7nH/t4LfIP6uJdPXmpoSv0zuWZ/D6P+TrPPRk3tWgP87bJtkLzkh3BrD+5reBr1xniKvZ8p9U9I\n5H/MXg+7/iM8BPyKOuExgewnWysZPuHkpG3QvOQvBB62lyOoURVLA8yaipsarmfkyVZT6p+wnpH5\nw66/k+xPoY4DV+bQNmhe8odde3CW/xmGP82/bO/vtG3QvOTXof4PeAP4GfWC+ch+7D37K+Fze3sr\n6hfK1Dbfcs3/NOof7zxwAX3zT0Mdi7yFekf3O+rEU7q2+ZZrfh3qny37l8BfqCF+9w/zM6H26fLr\nUHvInn8NKt851DvqV7O0zbdc8+tSfyGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEELr5\nH6+PmNS5XSJmAAAAAElFTkSuQmCC\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0x11ad91b0>" | |
] | |
} | |
], | |
"prompt_number": 191 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"fig.savefig('latex/pics/plot_three_theo')" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 108 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Fourth mode shape\n", | |
"-----------------" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"fourth_lambda = fsolve(f,12)\n", | |
"print \"The fourth root is: %.2f\" % fourth_lambda" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"The fourth root is: 11.33\n" | |
] | |
} | |
], | |
"prompt_number": 38 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"fourth_shape = get_mode_shapes(fourth_lambda,quiet=True)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 39 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"fig_fourth = plt.figure()\n", | |
"ax_fourth = plt.axes()\n", | |
"ax_fourth.plot(*fourth_shape)\n", | |
"ax_fourth.legend(('n = 4',),loc='best', fancybox=True, framealpha=0.5)\n", | |
"ax_fourth.plot([0,l],[0,0],'--k')\n", | |
"ax_fourth.set_title('Fourth mode shape')\n", | |
"ax_fourth.grid()\n", | |
"plt.show()\n", | |
"fig_fourth.savefig('latex/pics/plot_four_theo')" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEKCAYAAAAfGVI8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4VGXax/HvAKIoKIh0SwRFsbIoVZCiomADQQUVjSIW\nLLuyiPUVVtfGLsIKNkQEsURxhRWkaIBIB0EpCigtUhIUREBEEci8f9wzZgiTZGbOOfOcZ+b+XFcu\nM8mZOT+PcZ4599NAKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimlrJALXGQ6BJABFABlfP6aSkWl\nf2TKqVxgD/BL6GsXUNOD84wCnirys2DoSynlgDYEyqkgcAVQKfR1NLDF5XOUdfn1lFIRtCFQXjkc\nGAJsDn0NBsqHfpcJzCpyfAFQN/T9KOAVYBKwG7gNuAHoh9x1/C/ieX8BlgI7gKzQeaPJBOYALwA/\nA2uAFsCtwAbgB+DmiOOPAd4CfkTueh4DAqHflQH+DWwF1gKXFznXMcAbQB6wCbmTKe7/tSbAImAn\n0oAOKvL7m4DvQ+d6tMjz5oX+XfKAocBhEb8vAO4L5dsKDIzID3JNVwDbgSnAicXkU0qpUq0nep3+\nSWAucFzoa07oZxBbQ7ADaB56fDjwZsTzw3KB+UgpqgryxnZnMTkzgX3ALcgb4lPIm3T4DfQSpKx1\nZOj4t4BxwFHAScC3yJsnwF3ASqBO6LwzgAMUvtmPQxqyCkA1YAFwRzG55gE3hr4/Emga+j4DuSav\nhf79zwF+B04L/b4R0hiUCeVbAfw14nULgGlAZeCEUP6eod9dDawOvVYZpJGbU0w+pZQqVS7yKf3n\n0NdHoZ+vBS6LOK490mhAbA3BqCK/f5ND+wjWI3cKYc8jb8DRZALfRTw+O3TOahE/24a84ZYF9gKn\nR/zuDuQNH2A6B7+xX0Jhx24N5A37iIjfdw89J5rPgQFIYxkpI/SatSN+tgC4vpjX+RuF157Qc9tH\nPL4byA59P5nCRo1Q7l+RBkOlIS0NKaeCyCfMKqGva0I/r4WUNMI2cPCbWmmvuTHGYyP7I34DKpZw\n7A9FjgUpmxR9/nHIXULR/HVC39cqkm9DxPcnhZ6bT2Hj+CoHNziRegL1kTuMhRxaZor899uD3KEQ\nes7E0Hl2Ak8DVYs8t2jG8PU/CfhPRL6fQj+vg0pL2hAor+Qhn2rDTgz9DOTT55ERv4tllFEso4Pc\nGkG0DSkjZUT87ESklATy5ntikd+FbUTuJqpS2Dgeg9yBRLMGuauphtzRfIiUlErzClIOOiX0+o9x\n6P/PRTNuDn2/AbmjqRLxdRRSZlNpSBsC5ZX3gMcp7CN4AhgT+t1S4EzgXKSEMqDIcwMc6gcKS0fF\nifa8RBwAPkA+ZVdEPkE/ALwd+v0HwP0U9hE8HPHcfOBTpFO6EvL/WD3gwmLOdROFdws7kcasIIaM\nFZGS3B6khHV3lGP6UthHcD/wfujnryIdz2eEHh8DXBvDOVWK0oZAeeWfyGiYZaGvRaGfgdTqn0Rq\n1t8i/QWRn+ajzQ94A3njiuyHKKqkeQXRflfSHcR9yJ3LulC+d5B+CoDXgalIg7YI+G+R17oZGSEV\nHpUzluLvei4Fvkbe1AcD3ZA7itLy9UXuJHYBw5ERU0WP/x+wGPgKKSONDP18PHL3kYU0PstDOZRK\n2Ejk09ryEo55ERmlsBQZ7qeU8lZk57tSnmuFvLkX1xB0RMaDgwyN0zqkUt7ThkDFzI3S0Czkdr04\nVwGjQ98vQGqWNVw4r1KqeLr0hopZuSScow4HD2PbBBzPwUP5lFLu0mU5VMyS1VlcdDSHflpRSimf\nSMYdwWYOnrF4PIXjmf9Uu3btYF5eXtEfK6WUKtlaZD5JwpJxR/AxhYt5NUPWkDmkLJSXl0cwGLT2\nq3///sYz2JD9vfeCVK8eZOzYIL/8Ev2YFSuCPPhgkGrVgrz2mr/y2379NX/q5UfmqTjixh3Be0Br\nZNLQRqA/hasgvoaMGOqIzKD8FVntMeXk5uaajpCwZGV/9VV46inIzoazi5tnCzRoAAMHwh13QNu2\nUK4c3HZb8cfbfO1B85tme343uNEQdI/hmHtdOI+yVDAIzz4LI0bAzJlQL8bPL6ecAtOmQbt2ULYs\n3HKLtzmVSlfJ6CNIC5mZmaYjJMzL7MEgPPggTJ0Ks2dD7ViXnQupX1/uIC66SO4Mbrzx0GNsvvag\n+U2zPb8b3FqbxQ3BUL1LpZBXXoHhw+WT/bHHJv46K1bAxRfDCy9At27u5VPKdoFAABy+l/u+Idi1\naxdZWVnk5+fj54Ziy5Yt1KzpxVa9pQsEAtSqVYtu3bpx9NFHx/38nJwc2rRp43quzZuhYUPIyYEz\nz3T+el9/DW3awKxZ0o8Q5lX+ZNH8Ztme342GwPeloaysLBo0aEDPnj0pW9a/c2Ryc3PJyMgwcu4D\nBw4wd+5csrKyuOOO4jbCSr5774W773anEQA46yzo3x/uvFMalzK6ZKJSrvD9/0r5+fm0aNHC140A\nYKwRAChbtiwtWrQgPz8/oed78Wnoo49g1Sp47DF3X7d3b/j9dxg1qvBnNn+aA81vmu353eD7hiAY\nDPq+EfCDsmXL+qZ0tmMH3H8/vP46HF7cVvIJKltW+hwefhh+/NHd11YqXfm+IbCFzWORc3JyXH29\nhx+GK66Ali1dfdk/NWwIN98Mf/+7PHY7f7JpfrNsz+8G3/cRKLvMnAkTJ8I333h7nn/8Q/oesrNl\nWKlSKnF6R+CSZPQRXHTRRZQpU4aCglh2MoydWzXS/fulI/fFF+GYY1x5yWIddRQMGwZ33QVNm7bx\n9mQes71Grfntpw2BJd555x32798fHirmS2PHQrVqcM01yTnfFVfAX/4CzzyTnPMplaq0IXAgIyOD\nQYMGce6553L00UfTrVs39u7dW/oT47Rz506efPJJBg4c6EmHsBs10mBQ1gd66CHneeLxwgswZEgO\n27cn97xusr1Grfntpw2BA4FAgLFjxzJ16lRmzZrFsmXLGBU5rjHC7NmzqVKlSrFfc+fOLfY8jz76\nKL1796ZGDf9u7JadDfv2QYcOyT3vCSdAq1ZSJlJKJcb6bja3KiWJftC+//77qVmzJjVr1uTKK69k\nyZIlUY9r2bIlP/9c0o6e0S1atIh58+YxdOhQNmzYkFjIUrhRIx04UNYUMjHJa/DgNrRqBX36QMWK\nyT+/U7bXqDW//ay/IwgG3flKVOSyEhUqVGD37t0u/FuJgoICevfuzZAhQygT8Q7rl/kCYV9+CStX\nQvdY1qH1wGmnQevWMm9BKRU/6xsCv8jNzS2xI3fWrFlUqlSp2K85c+Yc8pxdu3axePFirr/+emrV\nqkWTJk0AOP7446MenyinNdJ//QseeADKl3cnT7xycnJ45BEYNAg86KLxnO01as1vP+tLQ35S0if1\nVq1a8csvv8T1epUrVz5o2YgNGzbQpEkTvvzyS4477riEc7pp/Xr47DN47TWzORo1krWIxoyB2283\nm0Up22hD4JKMjAwCgYDrwzurV6/+5/d79uwhEAhQo0aNg0pFTjmpkb7wAvTqBQkseuqacP5HH4We\nPeHWW2UpClvYXqPW/PbThsCB9evXH/S4f//+np4vIyODAwcOeHqOeGzbBu+84/0s4li1agXVq8OH\nH8L115tOo5wKBiEvT/6bHnZY6cerxGkfgUvSca2hl16CLl2gVi1388QrnD8QkLuCZ591NgAg2Wyv\nUbuVPy8PRo6UBQtbt5aNjBo2lF3t7roLPv8cXJ5UD9h//d2gDYFKyP79shn9Aw+YTnKwjh2lEZg8\n2XQSFY9335U3/exsOPFE+L//g+++g61b4YsvICNDGogTT4R+/cDFwXnKZ4LR9O/fP+rP1aGSea0m\nTQoGmzRJ2uniMmpUMNihg+kUKhbbtweD3bsHg6efHgwuWlT68d98EwzeeGMweN55wWB+vvf5bAA4\nvv/VOwKVkNGj4ZZbTKeI7tprYcEC8Gj+nXLJ9Olw7rlQtSosXgznnVf6c844Q0aGXXUVtGghmx8p\n53zfEAQCAV91kBbHdB/BgQMHEh6xFG+NdMcOKb34pUO2aP4jj5TJbSNHmskTL9tr1InkHzECevSQ\nSYBDh8p/s1gFAvDEE/LVurXsYe2E7dffDb5vCGrVqsXcuXOtaAxMCe9ZXCtJvbZjx8LFF8snOb/q\n1QveeAP0z8Z/pk2TLUxzcuDSSxN/ncxMuTvo0gU++MCtdOnJT2sah8pdB9u1axdZWVnk5+f7bmkF\nvwgEAtSqVYtu3bpxdBIG9LdqBX37wtVXe34qR5o2lU+Nl19uOokKW7VKPsW//z64NXx/6VK45BK5\nS42lvJRqQpUAR+/lvm8IlL+sXQvNm8OmTeaWlIjViBGyW9r48aaTKJB5J82ayd3Arbe6+9rvvy8j\njb780s6FB51woyHwfWnIFjbXGePJPmYMdOvmr0aguPzdusnY87y85OaJl81/OxBb/r17ZcOirl3d\nbwRA+qtatoT77ov/ubZffzdoQ6BiFgzCW2/5d7RQURUrwnXXwZtvmk6S3oJB2cK0WjVvd5N78UWY\nMweysrw7R6rS0pCK2axZMsPz66/d2wfCa4sWSWOwZo2ZvRKUvDE//TTMny97TXtp8WLZHGnhQpmE\nlg60NKSSKnw3YEsjANJ5eMwxMlJFJd+OHbJh0PDh3jcCIP+9+/WDG26Q2e8qNtoQuMTmOmMs2X/7\nDf77X7jpJu/zxKuk/IGADCUdPjx5eeJl898OlJz/0Udl8lfz5snL06cPVKoka07Fwvbr7wZtCFRM\n/vc/aNxYFgCzzY03yp4JP/5oOkl6WbBARmzF+obsljJlZKLakCEQsZ2HKoGfbvK1j8DHOnWSUR83\n32w6SWJuvlnKBn/9q+kk6WH/fvng8OCDUqYxoW9f+PVXeOUVM+dPFp1HoJLi11/lTiA3F6pUMZ0m\nMVOnyuSyBQtMJ0kPL7wgE7w+/dRcn9JPP8l+1nPnQv36ZjIkg3YW+4jNdcbSsk+dCk2a+LcRiOXa\nX3SRNGRr1ngeJ242/+3Aofk3bJBhoi+/bHZgQdWqclfw2GMlH2f79XeDNgSqVOPGQefOplM4U66c\nDCN97z3TSVLf3/4meweceqrpJJJj7lwZTqqKp6UhVaJ9+6BGDVi+HOrUMZ3GmXnzZFbrypV2DYG1\nyfz50uB+9x0ccYTpNOL112Xjm+nTU/O/u5aGlOc+/1w+2dneCICsc/PHH7BkiekkqWvAACnF+KUR\nAGn88/OlxKmi04bAJTbXGUvKbkNZKNZrHwjICJZ33/U2T7xs/tuBwvxz5sjqol6sJeREuXLSZ/HQ\nQ9H3PLb9+rtBGwJVrIICGQfu94YgHjfcIP0Euk+B+/r3lxVA/bQgYVjnzrL5zfvvm07iT36qmGkf\ngc8sWCCf7lasMJ3EXQ0bymQjt9bDV1JCvO02uSM47DDTaaKbMEFKV4sWpVZfgfYRKE+l2t1AmB/L\nQ7br31/mafi1EQDZoGjXLilhqYNpQ+ASm+uMxWUfN05mFPtdvNe+WzdZN2nvXm/yxMvmvx2AwYNz\nyMuTpTz8rEwZmVk+ZMjBP7f9+rtBGwIV1cqVMqP4/PNNJ3HfiSfCWWfpKBI3BIMwcqTcDZQrZzpN\n6TIzZa/k9etNJ/EXP1XKtI/AR555RobcDR1qOok3XnsNZszQTUyc+uwz2RXsm2+gbFnTaWLz4IMy\nEGLQINNJ3KFrDSnPNG4Mzz8P7dqZTuKNn36CunVl7+VKlUynsVfr1rL7mKmF5RLx/ffQqJEsOZIK\n/+21s9hHbK4zFs2+cSOsWwcXXmgmT7wSufZVq0KLFjBpkvt54mXr387ixVJiqVEjx3SUuJx0kqw9\nFd7C1Nbr7yY3GoLLgFXAauChKL9vA+wEvgp9Pe7COZWHJk6UERY21HyduPZaGDvWdAp7DR4sa/nY\nUhKK9Le/yR7HOp9EOC0NlQW+BS4GNgNfAN2BlRHHtAH6AFeV8lpaGvKJq66SW/1u3Uwn8Va4PJSX\nl5xtFFPJ5s1w9tly51i5suk08QsGoWlTePxx+Xu3mR9KQ02ANUAusA/IAq6Ocpyf+iJUCfbulclB\nl1xiOon3qlaV9Yf8UB6yzbBh0KOHnY0AyISyBx6QuxrlvCGoA2yMeLwp9LNIQaAFsBSYBJzh8Jy+\nZHOdMTL77NlwxhnyJmkLJ9e+a1f48EP3siTCtr+d3btlRc/wbm+25Q/r2hVWr4aRI3NMRzHOaRU4\nllrOl8AJwB6gAzAeiLpfUGZmJhkZGQBUrlyZhg0b0ia0DkD4j82vj5eElrT0S55EH0+Z0obLLvNP\nHq8fd+7chr59YcqUHI44wnweGx6PHg0NGuSwYQPUrWs+j5PHt97ahkmToG5df+SJ5XFOTg6jRo0C\n+PP90imnJZtmwACkwxjgEaAAeL6E56wHzgO2F/m59hH4wFlnwRtvSP00XVx8MfTuLXsyq5IVFMj2\nj2++CS1bmk7j3Nq10Ly5DCMu78PF8mLhhz6CRcCpQAZQHrge+LjIMTUoDNkk9H3RRkD5wMaNsGVL\nas4mLomOHordxImyZekFF5hO4o569aBBA/n3SmdOG4L9wL3AVGAF8D4yYujO0BdAV2A5sAQYAqTk\nWJTwrZuNwtmnToX27e0bDuj02nfuLBut//abO3niZdPfzuDB0skauXqnTfmjad485885BenKjZHi\nk0NfkV6L+P6l0JfyucmT7Vhkzm3Vq8tM06lT0/PfP1ZffQVr1kgnaypp3VqWHMnPh1q1TKcxw0/D\nOrWPwKB9+6BaNfj2W9mjON28/LJscv7226aT+Ndtt0H9+vDww6aTuK9nT+n76NfPdJL46VpDyjUz\nZ8ot/+LFppOYsWWL1Irz8/21365f/PyzTL777jv5wJBqZs+GXr1kEybbNq3xQ2exCrG5TpqTk8OU\nKdChg+kkiXHj2tesCeecI6tpJpsNfzujR0PHjtEbARvylyQnJ4cLLpDlJhYsMJ3GDG0IFABTpsBl\nl5V+XCrT0UPRBYPw6qtw992mk3gnEJBtWUeONJ3EDD/dBGlpyJAtW2Q28Y8/pv5CcyXJy5N5FFu2\n2Dum3AvTp8vicsuX21c2iUd4/aRNm2Sje1toaUi5YupUWZY3nRsBgNq1pZ9g2jTTSfzllVfkbiCV\nGwGAOnVkIuVHH5lOknzaELjE5jrp6NE5VpeF3Lz2XbrIfsbJ5Oe/nfx8yM6WBeaK4+f8sYjMn67l\nIW0I0tyBA7BokfYPhF1zDfzvf7B/v+kk/jBiBFx3HRx9tOkkyXH11bB0qcyyTyd+utnTPgIDFiyQ\nMdRff206iX+cfz4MHJi623TGav9+OPlkmDABGjY0nSZ5evaEM8+EPn1MJ4mN9hEox6ZNS4+9B+Jh\nojzkR598Ascfn16NAMiGTFlZplMklzYELrG1TpqdDdWr55iO4Yjb175LFxg3TlbaTAa//u2EO4lL\n49f8sSqav21b2eB+7VozeUzQhiCN/fYbfPEFnHuu6ST+Ur++bMwzb57pJOasXSuzzK+91nSS5CtX\nTtZTev9900mSR/sI0lh2NvTvD3PmmE7iPwMGwK5d8MILppOY8cgj8McfMGiQ6SRmzJoF99wDy5aZ\nTlI67SNQjmRny6Ys6lBdush48nT8bLJvn2w806uX6STmXHABbN8O33xjOklyaEPgEhvrpNOmyUQy\nG7NH8iL/WWfJ7OJkLMLnt+s/YYKUx04/Pbbj/ZY/XtHylykD11+fPuUhbQjS1PbtsuR0s2amk/hT\nIJC+o4eGD4c77jCdwrzw6KF0uCvUPoI09dFH8PrrshmNim7RIrjhBmkwU315hbDcXJlHsXEjVKhg\nOo1ZwSCccoosRNiokek0xdM+ApUw7R8o3XnnSYdpOk22e+MNuPFGbQRAGv90mVOgDYFLbKuThvsH\nwL7sRXmVPxCQJSe8Lg/55frv3y/r7MTbSeyX/IkqKX+3btJPkKw5JaZoQ5CGNm6UPoJzzjGdxP+6\ndoUPPzSdIjkmTYKMDOkoV+Kss6BiRZg/33QSb/mp8ql9BEkyapT0DaTLiAgnCgrgpJNkqe4zzjCd\nxltXXCETyG65xXQSf3nqKdmrY+hQ00mi0z4ClZDs7MKykCpZmTJyV5DqO5dt3CgzqdNxJnFprrtO\nBlekcnlIGwKX2FInDQalfyCyo9iW7MXxOv9118EHH3j3+n64/iNHQvfuie3M5Yf8TpSW/7TToEqV\n1C4PaUOQZlasgCOOgLp1TSexR9OmstxEqs4yPXBARgul80zi0oRnmqcq7SNIMy++KHvPvv666SR2\n6dNHNmcZMMB0EvdNnAj//Gdqf+J1aulS6NQJ1q3z35wS7SNQcdP+gcRce62Uh1Lxs8prr8Gdd5pO\n4W/nnANly8JXX5lO4g1tCFxiQ510/36YOfPQnbdsyF6SZORv2hR27/amPGTy+m/cCHPnyro6iUqH\nv5/wnJJULQ9pQ5BGvvxSdpyqXt10EvuUKSN3Bak2emjECFlGI5FO4nSTymtP+anapX0EHnv+edi0\nyb/jof1u/ny49VbpcPdbnTgR+/fLBLIpU3QSWSz8OqdE+whUXGbMkG34VGKaNoU9e1Jn9NAnn8gb\nmzYCsSlTBjp3Ts3ykDYELvF7nXTfPqkFt2596O/8nr00ycofCMjkMrfnFJi6/m51EqfT30+qloe0\nIUgTX3whcweqVjWdxG7hyWW2VzFzc2HhQp1JHK+WLSEvT4aRphI/VTq1j8BDTz8N27bB4MGmk9gt\nGJS6+sSJcPbZptMk7vHHZRTUkCGmk9jnjjtkB7e+fU0nEdpHoGKWk6P9A24IBOSu4L33TCdJ3L59\nsqSEzh1ITCqWh7QhcImf66R798qIlwsvjP57P2ePRbLz9+gBb7/t3iJkyc4/YYLsvNWggTuvl25/\nP23byq51mzZ5k8cEbQjSwMKFsnBW5cqmk6SGc86RRcg+/9x0ksS8+qreDThRvrws2T1unOkk7tE+\ngjTw5JPwyy/wr3+ZTpI6/v1vmU8wcqTpJPFZtQratIHvv4fDDzedxl7jx8t8nGnTTCfRPgIVI50/\n4L4bbpBPhHv2mE4Sn2HDpLNTGwFn2reXkXjbt5tO4g5tCFzi1zrp77/LH2yrVsUf49fssTKRv3Zt\naNwYPv7Y+WslK//OnfDuu3DXXe6+bjr+/Rx5pCze+Mkn7ucxQRuCFDdvnswcrVTJdJLUc/PNMGaM\n6RSxe/NNuPRSacSUc506SYkoFWgfQYp74gkZLvjss6aTpJ5ff4U6dWQESY0aptOUrKBAxr6PGQPN\nm5tOkxp++kkmaW7ZAhUqmMuhfQSqVNo/4J2jjoKrrrJjTsHkyTLSqVkz00lSR9Wq0KgRfPaZ6STO\naUPgEj/WSffskY00Lrig5OP8mD0eJvP36OG8PJSM/C++CPff782qqen895Mq5SFtCFLYnDnQsKF8\nclXeaNdOSgN+XpF05UrZavG660wnST2dOskEvf37TSdxRvsIUtijj8r2ek89ZTpJauvXT5Yofu45\n00miu+ceKWM8+aTpJKmpUSNZs6m4mfte0z4CVSLtH0iOHj3gnXfcW3LCTV4NGVWFUqE8pA2BS/xW\nJ929G5Yvj22EiN+yx8t0/rPPhmrVEu809DL/yJHQoYO3Q0ZNX3+nnObv1EkmF9pc0HCjIbgMWAWs\nBh4q5pgXQ79fCvzFhXOqUsyeDeefb3ZYWzrp3dt/W4Du3QuDBkGfPqaTpLazz5ZO+GXLTCdJnNM+\ngrLAt8DFwGbgC6A7sDLimI7AvaF/NgX+A0QbxKZ9BC566CFpBAYMMJ0kPezZI9s+zp8P9eqZTiOG\nD5eSxaRJppOkvr//HY4+Gvr3T/65/dBH0ARYA+QC+4As4Ooix1wFjA59vwCoDPh8+o39dP+B5Dry\nSNnY/qWXTCcR4UmEjz9uOkl6sL2fwGlDUAfYGPF4U+hnpR1zvMPz+o6f6qS7dslwxqZNYzveT9kT\n4Zf8vXvD6NHSPxMPL/K/+67Mem3RwvWXPoRfrn+i3MjfogVs3ixbgNrIaUMQay2n6G1L1OcFAoFD\nvgaEahs5OTkH/QfLzMz01fHPPfecb/LMmgUVK2ZSoYI/8qTL8bm5ObRqJZvWmMxz4AA8/ngOV1zh\nr+uTyseXKxdg69YATz0V/Xg3H+fk5JCZmUlmZuaf+Zxy2kfQDBiAdBgDPAIUAM9HHPMqkIOUjUA6\nllsDPxR5Le0jcMmDD0q98v/+z3SS9DN9uszgXb7cm1m8scjKko7r2bPNZVDJ44c+gkXAqUAGUB64\nHii6MO/HwM2h75sBOzi0EVAumjFDNh9RyRful5kxw8z5Cwrg6aflQ4A2AipWThuC/ciIoKnACuB9\nZMTQnaEvgEnAOqRT+TWgd3EvtnWrwzQG+aVOumOHrIbZpEnsz/FL9kT5KX8gAPfeG99QUjfzf/wx\nHHGELDedLH66/omwPb8byrnwGpNDX5FeK/L43lhe6PPPoWtXFxKlsVmzZIVJ3YHKnJtugscek+0g\nTzopeecNBmU5kSee0LsBFR8//bkE7747yMsvm45htz59ZF2Zxx4znSS99ekDhx0Gzz9f+rFumTBB\n/rsvWSJrH6n04Ic+AleZqqumEp0/4A/33CPLO+zcmZzz/f47PPAADByojYCKn6/+ZH78EfLyTKdI\njB/qjNu3w5o1spduPPyQ3Qk/5q9XTzateeaZ0o91I//AgXDuuXDZZaUf6zY/Xv942J7fDb5qCFq3\nlk+0KjEzZ8oic4cdZjqJAqnXjxjh/SSjdetk45nBg709j0pdvuojGDo0yJIl8j+Pit/f/gY1a8LD\nD5tOosL+8Q9Ytcrb7Syvuko+ADzyiHfnUP6Vcn0EbdtqP4ETOn/Af/r2lZFcCxZ48/oTJshwYV1h\nVDnhq4bgjDNknZbvvzedJH6m64zbtkkJ4rzz4n+u6exO+Tn/UUfBP/8pb9TFTZxPNP9vv8ks5mHD\nzA4X9vP1j4Xt+d3gq4YgENC7gkTNnCmb1Gv/gP/cfLMsU/3f/7r7us89JwMDLrnE3ddV6cdXfQTB\nYJDhw2VJ2h2uAAAQD0lEQVSNlLfeMh3HLvfdByecIPvnKv+ZPh169YIVK9z59P7ll9C+PXz1lfx3\nV+kr5foIoPCOQNefi8+0aXDRRaZTqOK0ayelz2HDnL/W99/DlVfKxjPaCCg3+K4hOOUU+eeaNWZz\nxMtknTE/H7ZsgYYNE3u+7TVSW/IPGiQzjYvubRxP/p9/lj2I+/WDa65xN1+ibLn+xbE9vxt81xBo\nP0H8wqOFypY1nUSVpH596Se44QbZ0jJee/dC586yoNxf/+p+PpW+fNdHADBqFEyZIuuqq9Ldfrvc\nDdwb09J+yrRPPoHbbpNy3llnxfacggJZzG7vXvjgA230VaGU7CMA7SeI1/TpUoNWdrj8chgyRJaD\nWLeu9OP37ZPNhnJzZfczbQSU23zZEJx0ElSqJPvu2sJUnXH9ehlP3qBB4q9he43Uxvzdu8tKoZdc\nAllZOVGP2bdPZtnXry87nn38MVSokNycsbDx+keyPb8b3NiPwBMXXQTZ2bHfOqer8N2Arj9vn7vv\nhl9/ldLek0/KnXDbtjIfZNIk2WmsXj0YMwZatjSdVqUyP719HLRn8dixMpdgwgSDiSxw443SEPTs\naTqJStSBA7KHwIwZ8jV7Npx/vqxTpA2AKo0bfQS+bQi2bZNPQ9u26WzZ4gSDULs2zJ0LJ59sOo1y\nSzCod3gqdinbWQxw3HHSECxcaDpJbEzUGVeulP1pnTYCttdIUy2/bY1Aql3/dOTbhgDg4otliJ2K\nTkcLKaXc4KfPHgeVhgCmTpUOs5kzDSXyuWuuga5dZYKSUio9pXQfAciIiho1ZPmEihUNpfKpAweg\nWjUZYlurluk0SilTUrqPAGQt98aNZWMPv0t2nXHJEtmNzI1GwPYaqeY3S/Pbz9cNARTOJ1AH0/4B\npZRbfF0aAlmc6847YelSA4l8rEMHuOMOWYRMKZW+Ur6PAGD/fqmFf/stVK9uIJUP/fGHDK/NzYVj\njzWdRillUsr3EQCUKwcXXiilED9LZp1x4UI49VT3GgHba6Sa3yzNbz/fNwQg8wm0n6DQZ5/pPrVK\nKff4vjQEss9rx46y0qZtsy690KwZPPOMdhYrpdKkNASyxPIff8S2dnuq275dGsYLLjCdRCmVKqxo\nCAIB/5eHklVnnD4dWrWCww937zVtr5FqfrM0v/2saAhA5xOEffoptG9vOoVSKpX4qeJebB8BQF6e\nbFLz448ykigdBYOy0ujkyc52JFNKpY606SMAWXf/hBPgiy9MJzFn9WpZY+j0000nUUqlEmsaApDN\nvqdMMZ0iumTUGadOlbKQ2yOnbK+Ran6zNL/9tCGwiPYPKKW8YE0fAcgQ0mrVYO1aWWIhnYT/3det\ng6pVTadRSvlFWvURAJQvD23byifjdDNvHpx2mjYCSin3WdUQgH/LQ17XGb0sC9leI9X8Zml++1nX\nEFx6qXSaFhSYTpJc2j+glPKKVX0EYaefDu++C40aeZzIJ7Ztg3r1YOtWKY8ppVRY2vURhPm1POSV\n7Gxo3VobAaWUN6xsCDp08F9D4GWd0euykO01Us1vlua3n5UNwYUXyubtO3aYTuK9YFD7B5RS3rKy\njwDkruD226FLFw8T+cCyZdCpk8yd0L0YlFJFpW0fAaRPP8GECXDlldoIKKW8Y31DEMdNhKe8qjOG\nGwIv2V4j1fxmaX77OWkIjgU+A74DPgUqF3NcLrAM+ApY6OB8B6lfHw47THbrSlU//ADffit9Ikop\n5RUnBYeBwLbQPx8CqgAPRzluPXAesL2U14urjwCgd2+oWxf69o3radYYOVLuej74wHQSpZRfme4j\nuAoYHfp+NNCphGM9qXBffrmUTlJVMspCSinlpCGoAfwQ+v6H0ONogkA2sAjo5eB8h7joIhlGunWr\nm6+aGLfrjL//DtOmQceOrr5sVLbXSDW/WZrffqVt+vgZUDPKzx8r8jgY+ormAiAfqBZ6vVXArGgH\nZmZmkpGRAUDlypVp2LAhbdq0AQr/YxV93L59GyZOhJNPjv77ZD1esmSJq683ZEgOJ50EVaua+ffR\nx/pYH/vzcU5ODqNGjQL48/3SKSclm1VAG2ALUAuYAZS2iWJ/YDcwKMrv4u4jAFlzKCsLPv447qf6\n2t13y/7E/fqZTqKU8jPTfQQfA7eEvr8FGB/lmCOBSqHvjwLaA8sdnPMQHTtCTg7s3u3mq5oVDMLE\nido/oJRKDicNwXPAJcjw0XahxwC1gU9C39dEykBLgAXARGSoqWsqV4ZmzcxvVhO+dXPDkiVw+OHJ\n26TezewmaH6zNL/9SusjKMl24OIoP88DLg99vw5o6OAcMenUCcaPh2uu8fpMyaGziZVSyeSnt5qE\n+ggANm+Gc86BLVtkkpntGjeG55+Hdu1MJ1FK+Z3pPgLfqFMHTjkFZkUdi2SXvDxYswZatTKdRCmV\nLlKiIQApD40bZ+78btUZP/lE1lFK5p2N7TVSzW+W5rdfSjUE48f7ZxG6ROlsYqVUsqVEH4E8uXAv\n4/POczFVEu3cCSecAN9/D1WqmE6jlLKB9hFECAQK7wpsNX48tG2rjYBSKrlSpiEAsw2BG3XG996D\n7t2dZ4mX7TVSzW+W5rdfSjUETZvCtm0y6sY2W7fCvHnaP6CUSr6U6SMI690bjj8eHn3UhURJ9Mor\nMHOm3BUopVSstI8giptugjFj7Bs9ZKospJRSKdcQNG8O+/bB4sXJPa+TOuOmTfD113Dppe7liYft\nNVLNb5bmt1/KNQSBAPToAW+9ZTpJ7N5/Hzp3loXmlFIq2VKujwBg3TpZkXTzZjvWHmrcGJ59Fi6O\ntoSfUkqVQPsIilG3LtSvLxu/+93q1bBxI4Q2IlJKqaRLyYYApDw0ZkzyzpdonTErC669Fso5WRDc\nIdtrpJrfLM1vv5RtCK67Tjar2bHDdJLiBYM6WkgpZV5K9hGEde0qI3F69XL1ZV2zbJlMIFu/Hsqk\nbJOslPKS9hGUItnloXi9+y5066aNgFLKrJR+C+rQAVaulE/cXou3zrh3L4waBZmZXqSJj+01Us1v\nlua3X0o3BOXLw/XXw9tvm05yqA8/hLPPhgYNTCdRSqW7lO4jAFi4UJad+PZbf20G37w5PPwwXH21\n6SRKKZtpH0EMGjeWoZl+uvtbtEj2Jr7iCtNJlFIqDRqCQAAeeAAGDfL2PPHUGV96SVZJLVvWuzzx\nsL1GqvnN0vz2S/mGAGT00KJFsGKF6SSyX8L48dCzp+kkSiklfFQ196aPIOypp2Qv4BEjPDtFTJ5/\nHlatgjffNJtDKZUa3OgjSJuGYNs2OPVUGU5as6ZnpynRgQOyDtK4cdCokZkMSqnUop3FcTjuOLjh\nBhg61JvXj6XOOHEi1Knjv0bA9hqp5jdL89svbRoCgD59YPhw2L3bzPmHDYN77zVzbqWUKk7alIbC\nunaF1q3hvvs8P9VBVq6Edu2kn6J8+eSeWymVurSPIAHz50uJ6Lvvkrv0c/fucOaZ8PjjyTunUir1\naR9BApo1g9q14aOP3H3dkuqM8+bB7Nkyn8GPbK+Ran6zNL/90q4hAOjbFwYOhIIC788VDEoD8PTT\ncNRR3p9PKaXilXalIZAGoEULuP12+fJSVhb861/wxRe63LRSyn3aR+DA0qVwySWwfDnUqOHNOX77\nTVYXHT1aOqiVUspt2kfgwLnnyl4Affq483rR6oz/+Y/MGfB7I2B7jVTzm6X57Wdwy3Tz+veXPQGm\nTpUtLd30ww/w73/LKCWllPKztC0NhU2eLJO8li+HI49073Xvuks6h71e9VQpld60j8Al3brBySfD\ns8+683qzZ0OXLrK4XJUq7rymUkpFo30ELhkyRFYlXb488dcI1xlXrpRGYMwYexoB22ukmt8szW8/\nbQiQ1UifeUbuDPLzE3+d/Hzo2FHmKLRv714+pZTykpaG/jy5lIZGjoTsbMjIiO/5u3bJ6KCuXeGx\nxzyJqJRSh9A+Ag+89BI89xx8+qnMAYjFH3/I/sN168Irr8j2mEoplQzaR+CBe+6RMlG7drB4cenH\nb98u8xF2785h2DA7GwHba6Sa3yzNbz9tCKLo0UM+2XfoAC+/DKtXS+ko0urV0mjUqwcVKsATTyR3\nNVOllHKLnz6/+qI0FGn2bHj1VQh/YGjTRlYvzc6GuXPhzjuhd2+oVctkSqVUOtM+giQJBmHtWmkQ\n5syRxqBHD3cnoCmlVCJM9xFcC3wDHABK2oX3MmAVsBp4yMH5jAkE4JRTZKXSN9+UO4GijYDNdUab\ns4PmN03z289JQ7Ac6AzMLOGYssAwpDE4A+gOxDgWxy5LliwxHSFhNmcHzW+a5refk+7NVTEc0wRY\nA+SGHmcBVwMrHZzXl3bs2GE6QsJszg6a3zTNbz+vRw3VATZGPN4U+plSSimfKO2O4DOgZpSfPwpM\niOH1/dn764Hc3FzTERJmc3bQ/KZpfvu5MWpoBvB34Msov2sGDED6CAAeAQqA56Mcuwao50IepZRK\nJ2uBU0yHmAGcV8zvyiEhM4DywBJStLNYKaXSUWek/v8bsAWYHPp5beCTiOM6AN8in/gfSWZApZRS\nSimllA/EMqHsxdDvlwJ/ifO5XnOSPxdYBnwFLPQuYolKy386MA/4Henriee5yeAkfy7+v/43In83\ny4A5wDlxPNdrTrLn4v9rfzWS/ytgMdAujucmg5P8uZi//n8qi5SEMoDDiN5H0BGYFPq+KTA/jud6\nzUl+gPXAsd5GLFEs+asB5wP/5OA3Uluuf3H5wY7r3xw4JvT9Zfjn799JdrDj2h8V8f3ZoeNjfa7X\nnOSHOK+/1/MIIieU7aNwQlmkq4DRoe8XAJWRIauxPNdrieavEfF7k+s5xZJ/K7Ao9Pt4n+s1J/nD\n/H795wE7Q98vAI6P47lecpI9zO/X/teI7ysC2+J4rtec5A+L+fr7YUJZccfUjuG5XnOSH2QeRTby\nRtXLo4wlcTKhzw+TAZ1msO3696Tw7tL09XeSHey59p2QlQ4mA/fH+VwvOckPcV5/r1fQj3VCmZ9W\nQY3kNH9LIA8pX3yG1PtmuZArVk4m9PlhMqDTDBcA+dhx/dsCtyGZ432uF5xkB3uu/fjQVytgDNLn\n5AeJ5j8t9PO4rr/XdwSbgRMiHp+AtGwlHXN86JhYnuu1RPNvDn2fF/rnVmAccruXTE6uoS3XvyT5\noX/6/fqfA7yOlBl/jvO5XnGSHey59mGzkA/Gx4aOs+1vP5y/auix6et/kFgmlEV2tjajsMPJD5PR\nnOQ/EqgU+v4oZFRFew+zRhPPNRzAwZ2ttlz/sAEcnN+W638iUgtulsBzveQkuy3Xvh6Fd/ONQsfH\n+lyvOcnvh+t/iGgTyu4MfYUNC/1+KQfvbeCHyWiJ5q+L/MdbAnyNf/PXRGqRO5FPdBuQjqfinpts\niea35fqPAH5ChvkVHepn+vonmt2Wa98PyfcV8om6cSnPTbZE8/vl+iullFJKKaWUUkoppZRSSiml\nlFJKKaWUUkoppZRSSimllPKb/wesjPTMKvPVWgAAAABJRU5ErkJggg==\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0xe2a4530>" | |
] | |
} | |
], | |
"prompt_number": 48 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"-----\n", | |
"\n", | |
"Experimental Results\n", | |
"====================" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"import pandas as pd" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 50 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"#We read from a file containing the theoretical data for \n", | |
"#testing purposes.\n", | |
"data = pd.read_csv('results.csv',)\n", | |
"data.dropna(how=\"all\", inplace=True)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 105 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"fig_exp = plt.figure()\n", | |
"ax_exp = plt.axes()\n", | |
"def plot_ex(an_ax,ls = '-'):\n", | |
" lines = []\n", | |
" for col in data.columns[1:]:\n", | |
" lines.append(an_ax.plot(data['x'],data[col],ls))\n", | |
" return lines\n", | |
"plot_ex(ax_exp)\n", | |
"ax_exp.legend(('n = 1','n = 2','n = 3'),loc='best', fancybox=True, framealpha=0.5)\n", | |
"ax_exp.plot([0,l],[0,0],'--k')\n", | |
"ax_exp.set_title('Experimental normalized mode shapes')\n", | |
"ax_exp.grid()\n", | |
"plt.show()" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEKCAYAAAAfGVI8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4VEUXh98Qek3oVZAOgnQp0nsRURBBFAEFBBQsiDT9\n6F2kI6KEIr0oEHpLKNKlSxMhdELvCSl7vj9mAwFSNrt3997d3Pd58sDunTvz29m799w5M3MOmJiY\nmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmHgA1YCTeouwkSCgjt4i7CAQ\n+NT6/w+B9RrXnw+wAEk0rtcWZgFD3KBOEw3Q4wLzdIKAx8CDaH8TddCxHSiqQ7v5SPjNS6x/7kZ0\n3fOABjpq0RpnfCfu+j17PEn1FuCBCPAWsEVHDUmBCB3bB/DSuf0XidJj3ohsx2jfoYmTMEcEruVn\nYGm016OATdb/1wQuAX2BG8A5oE20simAH4HzwDVrXSlfOPc74Coww/rexWjnBwHfAkdQo5QZQDZg\nLXAP2Aj4RCtfCdgJ3AEOATWiHQsEBgM7gPsol0gm67Ft1n/vWtupCBRAGcab1s82F8jwYufEwixg\nCrDK2tZuIH+041WAfdb29gKVX9A5FPgLeGg9zwJ0Bf611jfYqm+XtY6FQDLr+T7Wdq8DtwF/IFcs\nOtujRmGgvofoI8JwYKb1WAZU319BfWdDePY7TIL6jm8A/wFNYu0VRRAJ+07fBv5BfacBPD9iLAMc\nQPXJQp5dW1G8hboO7qD6s2QcusYBwVYNR4Di0Y5lJPbvcgJwwXrefqBqtGMDUb+dhdZz/wZej3Y8\nJ7AM9V2dBbpHO/aGtb57qN/O2Di0m5howjli93enAk4B7VA+/BuoCxjUjTscdSNIBlRH3bwKW4+P\nA5ajfthpgZXA8BfOHWE9NyUvG4JzqBt7FmubwagffimUkdkM/M9aNhfqpt3Q+rqu9XXUzT4QdSMt\naG0rwNo2QF5edg0VsPZJMiAzsNX6eaJrq/1iZ1mZZW27POCNMiILrMcyom5MH1rba426YftG0xkE\nFLMeT2bV9ieqD4sDT1BGKh+QHnWj/Dha/e9aP2NaYLH13CgCgE+s/2/PM0MQndzAZZ65jf5EGfFU\nqO9iD9DZeqwLcALV/77W+iOJ/YEtId9pYdT1VAfVj71Q32FSIDnqAeNL67EWQBjKSIIyEsFABdQo\n4WNr28lj0NQAddNNb31dBMhu/f8sYv8uQX2PvtbP+w3qoSaqjYFWTc2t5/ZE3fC9reX/Br63fp5X\nUYa0vvXcXda6AVKjHk5MTJxKEOrp7E60v0+jHX8DdbMKAlpFe78m6maeKtp7i1AXtxfPnmijqIz6\nIUSd+4Tnf5g1edkQfBDt9VLUk3YUX/DsJtcbmPPC51rHsxtkANAv2rGuqKdQsG2O4B3UDSu6ttgM\nwUxgerTXjVA3S4C2qKfK6OxEGdoonQNfOG7h+VHDftRNMYofed5IRac06ruLIj5DkAp1g4qqPxsQ\nyvNP2x/wzI24hWdGAaAecfdlQr7TH1BP01F4oUYkNVAPHZdfqPsvnhmCn6P9P4qT1vNepBbqYadi\nDLrj+i5j4jbPRh4DUd9tdP1XUKOGiihDFp2+gJ/1/1ut52eOo61EjTlHoD0CNCP2OYK9qBt4ZmDJ\nC8fuACHRXp8HcljLpkbdVKLw4vkf2g3UE1NcBEf7f8gLr0NRT72gnupbAk2jHU/K85/p2gt1pSV2\nsqGG/VWBdFbdt+MoH5/uqLZyolwJ0TnPs1EWPG8MY6vvxddRT7CpUUahAc9GGWlRfW/LXMMM1I1u\njPV1XtSo5Gq0MkmifYYcL+h98bPFhK3f6Yt9Jda2cqFGHS8agug31ryoh4Do7pZkVr0vEgBMRhmk\nvMAfKPfVg1j0Rr9uvkUZ1pxWfel5/uZ96QX9l6KVzYn6/UThzTM35acoQ3YCZTwHAatj0J5oMecI\nXM/nqCf3KyhfcnR8UTefKPJay91E/WiKW8v4olxE6aOVtWcSNLbJwAvA79Ha8kXdwEfbUGdMOoaj\nbjYlUD7ytmhz7V1G9VF08vL8Tc2RyeGeKJfKGyjdNVB9Zsskah+U6yz6aPAiauSWiWf9moFnT71X\ngVeilY/+f1uJTduLfeUF5EHdTK/y8txH9LIXgGE8fz2kRY1YY2ISyv1THNV/vWIpF51q1nItUde2\nL8qnH/3z5In2/yQ8c7tdRN3go+tLj5rXADiDmm/LgpqXW8rzI+9Ej2kInENsP8bCqMnBD1FPWN+h\n/LnRGYR62qqGmixcgrqZ/QqMR13MoH649XEOc1GjgfqoJ6uoOYfoN4vYPuMNlDujQLT30gKPUJN8\nubDtxhBfO6DcUYVR7pGkKFdbUdRkpC3nx1Qm+v/TogzwPdR8wQAb6gLl8uiO8mc/ifb+VWAD8BPP\nRkYFeOZiWQz04NkcQR8b27OFJajrqTbq+uqJGjHsRLnXIqxtJ7PqrhDt3F9R8xdvoPonjbWumEaB\n5VGummSoZdShqIcAiPu7SGfVcBP1oPQ/nn/QASiHmrNJCnxlrXs3arHAA9TvKRXqmi1h1QLwEc9+\nN/dQvydLHFoSHaYhcA7+PL9qZBnq4vwdGAkcRT2l9LO+F7VK5RpqeHvF+v5nwGnrsd7Wc3bzbEVI\n1EQyxPzkG9/TsLzw/6jXl1DurX6oVRgXUDcOLxvOfYx6evwL5f55A2Xcylp1+6P6w9Yn9ZjWnke9\nvoV66uuJuoF8a319O4aysb2O67OMR91YbqJumGvj0B39vPdRLo0TPLsGplqPfYy60R236lzCM1fU\nr6gVWIdRcxcJ6af4Pssp1A1xEspYN0EZ+wieTcK2R/Xp+9a2o/gb6IRy+dxGTTJ/TMykR80DRM2D\n3eSZayyu73Kd9e+09bwQXnZlrUAZ+9uoh6nmKCMTifreS6PcrjesGqIMSQPgGOp7GIdaVBDdQJuY\nGIaaxOzPNjExUaOx3/UW4amYIwITExN3wNzc5kRMQ2AszF2vJiYxY4anMDExMTExMTExMTExcQqG\n8buVKlVKDh8+rLcMExMTE3fiMGq1lEMYZo7g8OHDiIhb/g0YMEB3DaZ+/XWY+t3zz5318/I+JLsw\njCFwZ4KCgvSW4BCmfn0x9euLu+vXAtMQmJiYmCRyTEOgAe3bt9dbgkOY+vXF1K8v7q5fCwwzWQyI\n1edlYmJiYmIDXl5eoMF93BwRaEBgYKDeEhzC1K8vpn59cXf9WmAaAhMTE5NEjukaMjExMXFTTNeQ\niYmJiYkmmIZAA9zdx2jq1xdTv764u34tMA2BiYmJSSLHnCMwMTExcVPMOQITExMTE00wDYEGuLuP\n0dSvL6Z+fXF3/VpgGgITExOTRI45R2BiYmLipphzBCYmJiYmmmAaAg1wdx+jqV9fTP364u76tcA0\nBCYmJiaJHEd9S35AE+A6UDKWMhOBRsBjoD1wMJZy5hyBiYmJSQIwyhzBTKBhHMcbAwWBQkBn4GcH\n2zMxMTEx0RhHDcF24E4cx98GZlv/vwfwAbI52KbhcHcfo6lfX0z9+uLu+rUgqZPrzwVcjPb6EpAb\nCHZyu4kai1h4FPaIkIgQMqXKhHcSb70lGQoRePQIHjxQ/wfwsg6ukyUDHx9I6uxfRmLnyRPV+SlT\n6q3EBG32EeQD/Il5jsAfGAn8ZX29CfgOOBBDWWnXrh358uUDwMfHh9KlS1OzZk3gmdU2Xz97fS/0\nHpa8Frae38rqDau5/vg64XnCCY0IJcXFFCT3Tk7YK2EU8C1AxuCM5Emfhyb1m9C4UGMO7T6ku35n\nvK5WrSb//Qd//BHItWuQPHlNgoLg6NFA7t+HJ09qcvcuJE0aSOrUkDJlTUTgyRN1PtTk/n1IliyQ\ndOkge/aa5MgBKVIEkiMH1KtXk/z54fr1QFKm1P/zusXrJ08IHDkSzp2j5sOH8M8/BP73HyRLRs23\n3oL33ycwTRpImdIYeg38Our/QUFBAMyePRs0uI872xBMAwKBhdbXJ4EaxDwiMCeLbeDGoxv8vP9n\nFv+zmIv3L1IlTxVq5K1BtVeqUTBjQdImT0uqZKlI4qW8fo/DH/PvrX85efMkp26d4sDVAwQEBVD7\n1dp8UOID3ir8FqmTpdb5U9lHZCQcOQJ79sDhw3DoEBw9ClmyQJEikC/fs7+8eSFzZvW0nyEDJE8e\ne70WCzx8CHfuqL+rV+Hs2Wd///0HZ85AgQJQtiyUKwfly6u/uOpNlOzbBx06qM6vWhVeew1KlIDC\nheH+ffjzT1iyRJVr0AC+/x5KxrbuxORFtJos1oJ8wNFYjjUG1lj/XwnYHUc94q4EBAQ4vY1jwcek\n44qO4jPSRzqt7CR7Lu2R8Mhwu+q6G3JXZh6cKfV/ry8+I32k8dDGcv7ueY0Va09EhMiePSKjR4s0\naSLi4yNStKhIo0YBMnGiyLZtInfvukZLaKjI/v0i06eLfPaZSJkyIunSiTRqJDJ2rMiRIyIWi211\nueL6cSYx6g8JEenTRyRrVpEFC+LvjOvXRcaPF8mcWWT5cqfojA137n/AEE/PC4ArQBhqLuAT4DPr\nXxSTgTPAYaBsHHXp3ad248wL6fC1w9Lg9waS/cfsMjhwsFx/eF3T+q89uCYfjf1IMo7KKN+u/1Zu\nPb6laf2O8uCByLJlIu3aiWTJIvLaayJffCGyZInItWuqjFF+yLduiSxdKtKli0jBgiI5coh8/rnI\n1q3KiMWGUfTby0v69+wRKV5cpHnzZ1+SrezZI5Irl8jIkbZbUgdx5/7HIIZAS/TuU0MREh4i/Tb1\nk8yjM8vUvVMlJDzEqe1duX9Fuvh3kcyjM8vI7SPlcdhjp7YXFw8eiPz+u0jjxuopu149kUmTRIKC\ndJNkF6dOiQwbJlKqlDIKX3whsnOny+5v+rBxo7LYCxfa/0EvXRIpW1bk44/V0MskVtDIEBjCt2TF\n+rlMtgZtpfOqzrye7XUmNpxIjnQ5XNb2qZun6Lu5L8dvHGfhewspnb20S9qNiIBNm2DuXFi1SrmT\n27SBJk2UT9/dOX0aFi+GOXPUQpkuXeDDDz3jsz3lyBGoWxeWLYNq1Ryr6/FjaNcOrlyBNWs8rKO0\nw0hzBFqht3G1G62Glo/DHstn/p9JrrG55M8Tf2pSpy3EpH/ekXmSZXQWGb9rvFic+Ah76ZLIgAEi\nOXOKvPGGyMSJIsHBCavDnYb2kZEimzaJtGyp5jg6dhSZMSNAb1kOERAQIHLxokiePGokoBWRkaqD\n3nvPqcMod7p+XgSNRgRmrCGDcPXBVWrOrsnd0Lv80+0f3in6jq562pRsw+6Ou5l/bD5NFzTlxqMb\nmtUtAlu2wHvvqQUiN27A+vVq9U/37pA1q2ZNGY4kSaBOHTU6OHFCrWj69lto2hR27tRbnZ08fAiN\nGkGPHtCqlXb1JkkCkyappVqTJ2tXr4mh0du46sbfV/6WPD/lkcGBg5369G0PYRFh0mdjH8k1Npf8\ndeEvh+oKDxeZO1ekZEk16Ttlisi9exoJdWMePxaZOlUkXz6RGjVE1q1zo3mEJ09E6tRREyDOEv3f\nf2reYc8e59TvxmBOFnsGS/9ZKplHZ5al/yzVW0qcrDm9RrKMziIrTq5I8LmPHolMnuymNzoXEh6u\nJsmLFxepWlVNLBuejh1FmjWLe1mUFvzxh7qAbt92bjtuBqYhMA72+hhHbB8heX7KI39f+VtbQQnE\nVv17L+2V7D9ml9/+/s2m8o8eqTX/WbOqe4Wzbmzu7OMVeVl/RITIzJnK5d68ucjJk7rIip9160Re\nfVUC1qxxTXtffSXStKnmTxHufP1gzhG4N0O3DWXO4Tns6biHsjni2l5hHCrkqsDW9lsZtn0Yw7YN\nQ2JZ5RUWBlOnQqFCsHs3bN4My5dD5couFuymeHtD+/Zw6hRUrKhWUHXtCjdv6q0sGo8eKVE//wyp\nUrmmzVGjIDgYxo51TXsmuqC3cXUZI7aPkCKTisjVB1f1lmIXV+5fkVI/l5LPV38ukZbIp+9HRIjM\nmqVG8A0bqp23Jo5z65ZIjx5qZPXrr2oxje706iXSpo3r2w0KEsmUSeTff13ftgHB3EfgnozdOZZp\nf09ja/ut5EyXU285dnMv9B5vLXiLUtlKManRJLZt8+KrryB1ahg50vFl5CYvc+gQdOumVl1NnQpl\nyugk5OBBaNhQBXbSY4nXiBGwf7/ar5DIMfcRGAhbfYzjd42X/BPyy8V7F50rKIHY6yO9G3JXXptY\nVop2+17y5hVZtEifSWB39vGKJEx/ZKTIjBlqdPDllyIPHzpPV4xERIiULy/i5/f0LZf3/+PHIq+8\nooJLaYA7Xz+YcwTuxa9//8r4PePZ8vEWcqfPrbcch3n0CEYOysCVUeu4mXUJXef8xPvvP4vrb+Ic\nkiSBTz6B48dVZNRSpWD7dhcKmDwZ0qZVkxh6kSoVDB8O33yjQsWaeBR6G1ensfG/jZJtTDb595Zn\n+DX9/UXy5lUu4suXRS7cvSB5x+W1eTWRiXasWKF2ZX/1lVql5VTOn1f++VOnnNyQDURGilSooDam\nJGIwl4+6B6dunpKsY7JKwLkAvaU4zMWLajljwYIiGzY8f+z0zdOS48ccsvjYYn3EJWJu3lRGuVAh\nJ+89aNVKZOBAJzaQQLZvVy6ix/oFSNQbTENgHGLzMd5+fFsKTyosv/79q2sFJZD4fKSRkSoGUKZM\nIj/8oELNx8Shq4cky+gssuviLu1FxoE7+3hFtNP/xx8i2bKJDB3qhP1dR4+qiYkHD146pGv/N28u\nMny4Q1W48/WDOUdgbMIjw2m5pCVNCjWhY9mOesuxmzNnoGZNWLgQduyAwYNjTzNbKnsp/Jr58d7i\n97jy4IpLdZrAu++qxTQbN0K9eipwp2YMGqSCIqVNq2GlGjBqlNpXEGymQXcEI03tWQ2cZ/D56s85\nd/cc/h/4u2XyeItFzQsOHgz9+sGXX6qNTrYwYvsIlp9aztb2W0mZ1ExO7moiI2HYMLXEdMYMFcrb\nIY4cgfr1VY7ONGk00agp33wDoaHqAycytFo+ahoCJzDjwAzG7hrLrk93kSGl+8VRP3tWpZmNiAA/\nP5X/NyGICB8s+4Dk3smZ/c7sqIvVxMVs365yHnzwgTIMSZPaWVGLFlClCvTsqak+zbhxQ+VAPnkS\nsmXTW41L0coQmK4hDQgMDHz6/+M3jtNncx+Wvb/MbYxAlH4RmD1bhTV4+23Yti3hRgDUxenXzI9j\n148xbvc4bcXGQPT+d0ecpb9aNThwQP01bGhniIpDh1R87K5dYy2ie/9nyQKtW8OUKXadrrt+A2Aa\nAg0JCQ+h9dLWjKwzkmJZiuktJ0HcvaueHEePVrGBeva03RUUE6mTpWZ56+WM2TmG9WfWayfUJEFk\nzgzr1kGFClC+vJpDSBCDB8N336kt40bm669h2jSV2czErdF19l0Luq3qJq2WtDJcToH42LZN7Qv4\n4gvtV+JtDdoq2cZkk0v3LmlbsUmCWbZMhfWfMcPGEw4eVMmW3WV5ZrNmKrFDIgJz+aixWHZ8mbw6\n/lW5G3JXbyk2ExEhMmiQSPbsIqtWOa+dwYGDpeasmhIR6eSY9Sbxcvy4SJEiKjxFvEtMmzUTGT/e\nJbo0Yds2tZnC2bkRDATm8lHjsGjVIrqu7sqCFgvcZl7g+nXlN96yBSZPDnR8ZUkc9KvWD4CRO0Y6\npX539/G6Un+xYrBrFxw7puaB7t+PpeDBg7BvH3TuHG+dhun/qlXB1xf8/RN0mmH064hpCBwkwhLB\n0G1D+abSN1TMXVFvOTaxbRuULasmhTdtgkyZnNuedxJv5r47l0l7J7Hzorsm5vUcfH1h7VrIkwfe\nfBOCgmIoNG4cfPWV63INaIGXl5rcMvMVuDV6j7LsYvSO0VJrVq3n4vIblchIkREj1O7TtWtd3/7K\nkysl77i8cvuxmW7QCFgsyvOTI8cLoSmuXRPx8VGJENyN8HCVEGP3br2VuATMfAT6c/rWaarMqMLe\nTnvJ75tfbzlx8uABfPwxXLsGixerp0E96LG2B1ceXGFJyyXm/gKDsGaNCiY6bRo0bw4MGQKXLsEv\nv+gtzT4mTIC//lIXuodj7iPQGYtY+HTlp/yvxv+4cPiC3nLiJCrlYdasEBj4shFwpY90dL3RnLl9\nhhkHZ2hWp7v7ePXW37ixWmL6xRcwbWKYSj/5xRc2n6+3/pf45BM1+XXunE3FDadfB0xDYCdT901F\nRPjiDdt/MHrg7682Fn31lXrAS5FCXz0pk6ZkXvN59N3clwv3jG1AExNly6pYUqdGLOO/5EWREiX1\nlmQ/6dLBp5+qGCkmNmGksbnbuIaC7gZRfnp5/vrkL4pktmPrrQsQgaFD1c1/yRLjJY4fsX0EAUEB\nrP9ovekiMhDhFarQ7+533Kz6DtOnQ7JkeiuykzNn1Ez4xYuQPLneapyG6RrSCRGhk38nelXpZVgj\nEBKidgmvXq1WABrNCAD0erMXd0Lv8NuB3/SWYhLF/v0ku3GFgX835fp1eOcddS25JQULQtGi6kdg\nEi+mIUggfgf9uBNyh55VngXgMpKP8epVqFFDhYcIDIQcOeI/Rw/9SZMkZVazWfTb0s9hF5GR+t8e\nDKN/0iT4/HPSpPdm+XLw8YFGjeLYa2DFMPpf5NNPVfjVeDCsfhdiGoIEcP3Rdfps7oNfMz+SJrE3\nlKPzOHhQTQo3awZz58aeN8AovJb1Nb6p9A0dV3bEXdyCHsv167Bypbp5olxCv/+uHqrr1oVbt3TW\nZw8tWqiAeZomZvBMjOScNfwcwScrPsE3pS9jGxhvw8ry5dCpk1rw8d57equxnQhLBJVnVKZz2c50\nKtdJbzmJl6FD4cIFmD79ubdFoHdvtQFtwwbbRpiGonNnyJ8f+vTRW4lT0GqOwEjotinDFnZe2Ck5\nx+aUe6H39JbyEhMmqATm+/frrcQ+jgUfk8yjM8v5u+f1lpI4CQtTF9CRIzEetlhU+suCBUWCglys\nzVF27VLxh9wsEKStYMYach2Rlki+WPsFo+uOJn2K9C8d18vHaLGo5EzTpqkRcLly9tWjt4/0tayv\n0eONHvRY28Ou8/XW7yi661+9Wj01l4x5yaiXF/TvD927q/mnF5fn664/LipWVH6uHTtiLWJo/S7C\nNAQ2MP3v6aRNnpY2JdvoLeUpISHw/vsq6chff0HevHorcozv3vyOkzdPsuLkCr2lJD78/NQmrHjo\n0QN69VI5rM+edb4sTfDyUp/Nz09vJYbGSL4l60jHWNx8fJPiU4qz+ePNlMxmjE02t26pyJF588LM\nmfpvEtOKgHMBtF/Rnn+6/UPa5AZLku6pXLumQpJevGhzYvpp02D4cLV5t2BBJ+vTguBglWrvwgVI\n//KI3p0x9xG4iH6b+9GmZBvDGIELF1S03WrV1MogTzECALVerUXNfDUZGDhQbymJh7lz4d13bTYC\nAF26wPffQ+3a8O+/TtSmFdmyQa1aiSL2kCeg97zLS+y9tFdy/Jgj3mQzAQEBLtFz7JhInjwi48Zp\nW6+r9NtC8MNgyTI6ixy6esjmc4yk3x5002+xiBQrJrJ9u12n//qrSO7cIr//HqCtLmfg7y9SuXKM\nh9z5+sGcLHYuIkKPdT0YUWeEIZLN7NwJderAyJEqbpCnkjVNVobXGU6X1V2wiEVvOZ7N3r0QEaFC\nMdhBx44wYIBasGBjfDf9aNhQJV44cUJvJYbEnCOIhSX/LGHEjhHs77yfJF762svVq6FDB5gzR13P\nno5FLFSfWZ2PXv+ILuW76C3Hc+nSBV55Bfr1c6iaKVNULpitW/ULb24TPXtC6tQqzLaHYO4jcCKh\n4aGSf0J+2Xx2s95SZO5clUgmkeTZeMrR4KOSeXRmCX4YrLcUz+TRIxFfX5GLFzWp7scf1XL9K1c0\nqc457NnjcXsKMF1DzuPn/T9TLHMxar9a26byzlqHPG2a2tW5ZYtaDu0sjLiOukTWErR9vS3fb/k+\n3rJG1J8QdNH/55/qosqd2+GqAgMD6dkT2rVT7svr1zXQ5wwqVFCusEOHnnvb3a8fLTANwQvcCbnD\n8O3DGV1vtK46Ro9Wf9u2QfHiukrRjf/V+B/+p/35+8rfekvxPPz8lL9RQ/r3VxnO6tWDO3c0rVob\nvLzU5ptFi/RWYjiM5FuyjnT0pdeGXtx7co/pTafHX9gJiMAPP8CyZSqxfK5cusgwDDMOzMDvkB87\nOuww8xZoRVAQlC8Ply9rvv5YRE0e79kDGzdCmjSaVu84Bw8qa3X2rDIMbo65j8AJnLtzDr9Dfgyq\nOUiX9i0WtSJo9Wo18ZbYjQBAhzIdeBLxhPlH5+stxXOYPVslrHDCJhQvLzVxXKSIut8+eaJ5E45R\nurQKObFvn95KDIVpCKLRf0t/erzRgxzpEhZiMXDDBrUsbeVK9Svo0kVlih8xQuWKPHdO3eXjwGJR\np+3dCwEBKr+wqzCyjzSJVxImNppI7029eRj2MMYyRtZvCy7VLwKzZmnqFnpRf5Ik8OuvaoFO27YQ\nGalZU47j5QWtWj3nHnL360cLTENgZd/lfWw9v5Vvq3xr+0lHjqgb/ttvqyQAv/yitv6WKKF2Mt6+\nDVOnqkhd6dOr+NAHDrxUTWSkCgN/8qQK9evjo+EH8wCq5KlCrVdrMXz7cL2luD+7dqk7dJkyTm0m\naVJYsECFQ+nSRdkfw9CqldplHM/DmYk+6LoMq87sOvLL/l/iL2ixiGzcKFK/vkiOHCLDh4vcvh3/\nebdvi4wfL5Irl0ijRiI7doiISHi4SJs2IrVqiTx86OCH8GAu378smUZlkjO3zugtxb35/HMVU9pF\n3L8v8sYbIt9957ImbaN48ae/QXcGjZaPGmm2xPq5XE/AuQA6+XfixOcnSOYdR7buM2fgww/h4UP4\n9lto0ybhftYnT5SPduRILHleoVfKyRyjBH/+qR7UTGJn5I6R7Lq0ixWtzQildhERoSaedu6EAgVc\n1uytWyo2VqdO8PXXLms2bgYPhps3YeJEvZU4hLmhTCMsFotUmVFFfj/8e9wFlywRyZJFZMoUkcjI\n5w7ZE6vrC8bWAAAgAElEQVQk7HG4/Fx6mtxNnlmezF6Q4PO1xF1irYSGh8qr41+VLWe3PPe+u+iP\nDZfpX7dOpGJFzau1Rf/58you0fz5mjdvHydPimTPLhIR4dbXD+aGMm1Ye2Ytd0Pv8kGJD2IuEBYG\nX34J332n8vV166ZmwxwgPBxafZiU1bk/I9X2jSQf1F89KoWHO1Svp5MiaQpG1h1Jzw09zThE9jB/\nvlotpAOvvAJr1qhVcZs26SLheYoUUVFJt2/XW4nJC7jcmlosFikzrYws/WdpzAWCgpSDs1kz2+YB\nbCAsTKRFC5EmTURCQ61v3r6t3qha1eB79PXHYrFIpd8qyexDs/WW4l48fizi46P79bV1qxpYHzig\nqwzF8OEiXbrorcIhMEcEjvPHiT8AaF6s+csHz55Vgf9btlTb8X19HW4vPFxNK4SEqA1jT6cXfH3V\n0tN69dQ2+JMnHW7LU/Hy8mJs/bH039Kfx+GP9ZbjPqxerTaR6Zx9vnp1FTrlrbcMkOWsVSv1Q4yI\n0FmIZ9AQOAn8C/SO4XhN4B5w0PoXW/AYl1rSiMgIKTa5mKw+vfrlgxcvirz6qpoPsAFbfIzh4SIt\nW6oFQyEhcRScNUslHXBhlnB39JG2XNxShmwdIiLuqT86LtHfvLnIjBlOqdoe/VOnqvhvN25orydB\nlC0rAVon+HAhGGRE4A1MRhmD4sAHQLEYym0Fylj/hjrYpibMPzof31S+NCrY6PkDwcFQty507arm\nAzQgMlJtrHnwAP74A1KmjKNwu3ZqRVLduiqNoEmMjKw7kvG7x3PtodlH8XL3rnLMN49h5KsTXbsq\nOe+8A6GhOgpp1izOxPYmtlEZWBftdR/rX3RqAv421OUyKxoWESb5J+SXgHMBzx+4dUukZEmRAQM0\naysyUqRdO5G6deMZCbzI4MFKy61bmmnxNHqu7ymdVnbSW4bx8fMTefddvVW8RGSkSOvWaqT8wkI8\n13H4sEi+fG4bmhqDjAhyARejvb5kfS86AlQBDgNrUCMHXZlzeA75fPJRM1/NZ2/ev6+yvtSvr9Iu\naYCIevI5dw6WL49nJPAi33+v5gwaN1b7Fkxeon+1/iw/uZxj14/pLcXYLFig22qhuEiSBGbOhKtX\noc+Lj4+uoqQ1F/nRozoJMAaObkRogXILdbK+/gioCHSPViYdEAk8BhoBE4DCMdQl7dq1I1++fAD4\n+PhQunRpatasCTyLB+Lo66rVq1JkchF6ZO1Bqeyl1HGLhcCqVSFjRmr6+4OXV4Lqjx6rJOp4QEAg\nkyfDlSs12bAB/v7bDr0i1Jw3Dy5cILB3b/D21rw/YtOvZf3OfH045WHm+89nVL1RhtBjuP4vWhSK\nFSNw4UJIkcKQ+m/fhtKlA2neHMaP115fvPrfew/SpYN27QxxPcT1Our/QUFBAMyePRsMsKGsEs+7\nhvoS84RxdM4BGWN43yVDqdmHZkuNmTWef3PUKJFKlUSePLGrzhcnyywWkV69RMqWFblzxz6dT4mI\nEKlTR+T77x2sKHbcebI1NDxUsn+e/aVNZu6EU/t/wgSRtm2dV79oo/+//1TEFn9/x/UklIBx49SP\n1Q1BI9eQoyQF/gPyAcmBQ7w8WZyNZxbrDSAolrqc3mkRkRFSaGKh51NQbt2qckGeP69ZOwMHKvf+\nzZsaVXjtmkjOnCLr12tUoWcx/8h8qTC9gljc1M/rVCpXFlmzRm8VNrF7t9pjcOiQixsODxfJlEnT\ne4CrwCBzBBHAF8B64DiwCDgBfGb9A3gPOIoyEuOB1g62aTeL/llE1jRZqZWvlnojOFgt7J85U219\n1ICffoJ581RSjkyZNKlS7YCcN0+tKLp8WaNKPYdWJVoRYYlg2YlleksxFhcvwqlTagWaG1CxIkye\nDE2bqnkDl5E0KTRpovbymOiOUy1npCVSik0uJuv+XafeiIgQqV1bpH9/h+uOGhpPny6SN68THyyG\nDBGpVk09wWiIO7uGRJT+DWc2SKGJhSQsIkxvOQnGaf0/bpxIhw7OqTsaWusfOlSkXDnXReMNCAgQ\n+eMP5YJ1MzDIiMBtWHZ8GelSpKN+gfrqjUGD1LKeQdpkI1u4EAYOVCMBjQYXL9OvH6RKpXJZmjxH\nvQL1yOuTl98O/Ka3FOOwZInaGe9m9OsHr72mUn24LGVA/foqK5Qhky0nLpxmNSMtkVJyaklZdWqV\neiMgQPncr17VpH5/fzXNcOSIJtXFzfXrKozj6hh2RCdy/r7yt2T/Mbs8ePJAbyn6c/GiSMaMdi+A\n0JvQUDX47d3bhY02bSoyd64LG3QczBGB7aw4uYJk3sloXKixCvTTqRP8/DNkz+5w3YGB8Mknyr0Y\ntSTZqWTJAnPnqs9w964LGnQfyuYoS618tRi3a5zeUvRn6VKVOS95cr2V2EWKFGoX/tKlagrPJbzz\nDqwwc13ojVMsZlSE0T9P/Kne6N1b5P33Nal7/361ymHs2ABN6ksQXbqIdNJmV60nzBFE8d/t/yTT\nqExy/eF1/QQlEKf0f5UqLhs1OvP6OX5c/cacmUzsqf7gYJEMGaKFBTY+mCMC21j/33rCLeG8XeRt\nlS945kxNshKdOqUiKE6fDmXLaiA0oYwcqfIjmIm3nyO/b37alGzDsO3D9JaiH5cuqQi2brJaKC6K\nFVMJ/d57D86fd3JjWbOqYf2WLU5uyCQunGIxq8+sLnMPz1UrbcqUUdE9HeTCBbU6yM/PcX0OsWKF\nSMGCKta8yVOuPbgmGUdllKA7rovgaijGjxdp315vFZry008ir78u8sDZ0z9jxoh89pmTG9EOzBFB\n/Oy8uJML9y7QqkQrGDsWMmdWSxEc4OZNtcCge3fo0EEjofby9ttqODJ4sM5CjEW2tNnoWr4rg7Zq\nsyLM7XDT1UJx8dVXKlXHRx85eSVRs2Zqwk+n/OkmThgRNJ3fVKbsnSJy+rTaOXj2rEP1PXggUqGC\nSN++z7+vq4/92jWRrFkdSvnkSXMEUdwJuSNZRmeR49ePu15QAtG0/y9dcvlqIVddP0+eqJVEL/7+\nHOUl/YUKGSSFWvxgjgji5tj1Y+y9vJcOpdpD587Qvz+8+qrd9YWFqfjppUrBMCO5n7Nlg1GjoGNH\nM9NSNHxS+vBtlW/5PiC2PEgeyrJlamuum64WiovkydXHW7BA7dtxGk2aqIxuiQjdo9ZFw2rgtKHt\nn20pnrk4fa/kVxOr+/eDt7dddVksakgaEqJG3UmTaiZTG0SUv6pJEzWGNgHgcfhjCk0qxPJWy6mQ\nq4LeclxD1arQt6+6FjyUQ4dUhPYNG6BMGSc0sHGjCkW/c6cTKtcWLy8vMNZ93GE0Gy6dvX1WMo7K\nKHdvX1WzuoGBdtdlsYj06KGGpIaekz1+XCRzZgPk/jMWP+/7WerOqau3DNdw6ZKIr6/bbiJLCIsX\nq592cLATKg8NFUmf3i1+S5iuodgZu2ssnct2JsPPflCuHNSoYXddI0dCQICaP0qVKuYygUZYwlms\nmEo+MnBggk81hH4HiEv/p2U+5dydc2w5Z9wlgZr1v05uIT2un5Yt1Sj9vfeU29YRXtKfIgXUqgXr\n1ztWsRvhcYYg+GEw84/O5+t8rVUo0NGj7a7Lzw9++QXWrQMfHw1FOosBA2DxYvjnH72VGIZk3skY\nUmsIfTf3RTx9JciyZerOmEgYPFj9Lp3iDU1k8wRG8i2JFj/U/pv7cyf0DlP/eKLiQNtpCFavhk8/\nha1boUgRh2W5jgkT1EazdeviL5tIsIiFsr+UZWDNgbxT9B295TiH4GB1oV67lsCcqO7N/ftQqRJ8\n+SV89ln85W3m8mV4/XW4ft3uuUVXYM4RxMD90PuSaVQmuRi4UkWBu3vXrnp271bu9l27HJbkesLC\nRIoUcZtkJK7C/5S/lJhaQiIiI/SW4hymTVOZ4BMhp0+rFdR//aVxxaVKOTe2hQZgzhG8zIyDM6id\nrxa5B4xV4aUzZEhwHadPq9hTfn7qScMWDOVjT5ZMbZ775hsID7fpFEPptwNb9Dcp1IS0ydOy8Jgz\n1x3ahyb9v3QptGjheD12oPf1U6iQ+r2+/z5cuZLw82PV36QJrFnjkDZ3wWMMQXhkOON2j2PY/Qpw\n65by6ySQ4GBo1Ej5Hps2dYJIV9G4MeTJA9Om6a3EMHh5eTG89nAGBA4gPNI2A+k23LqlYuk3aqS3\nEt1o0gS6dNFm8vgpjRsnmnkCI/mWrCMd+1hwdAG/7Z3G5lFXVb67+vUTdP6DB1CzpjIAdiy8MR7H\njkHt2ir4WMaMeqsxDPV+r0fL4i3pXK6z3lK0Y+ZMWLVKTRYnYiwWZQiyZtXoGSgyUlV2+DDkzq1B\nhdqj1RyBR4wIRIQxO8fw07VS6gtLoBEID1fDyrJl1cIbj6BECeXjGjNGbyWGYljtYQzZNoTQiFC9\npWjHsmW6uYWMRJIkKlLptm3w668aVOjtDQ0aqMUXHo5HGIKAoAAiQx7z+vQVMHRogs4VUUPKJElU\nrhovO2yr3j7SWPnhBxUn+9q1OIsZVr+NJET/G7neoFyOcvy872fnCUogDvX//fvqzvfWW5rpSShG\nun7SpYM//1QRZXbvtu2cOPUnkmWkHmEIxuwcw89Xy+FVogRUqZKgcwcPViO/RYsMGDrCUfLkUdFW\nhw/XW4mhGFJrCCP/GsmDJw/0luI4q1ZB9eqQPr3eSgxDkSIwY4badBYc7GBlDRqoHaVPnmiizSR+\n7Fo+deTaEck/PLtYcuQQ+fvvBJ3r5yeSL59mqYuNSXCwikYZlEhj88dCm2VtZMjWIXrLcJzmzQ2Q\nGMOY/PCDSI0aKhWJQ1SuLLJhgxaSNAeNlo+6/WRx++Xt+XhDMLWvp1FL6GxkwwZo21ZtGCtaNMHN\nuhfffw9Xr6rHJBMAztw+Q6XfKnG6+2kypnLTyfRHjyBHDjh3Tm2eNHmOyEjlMSteXK2otpuhQ1Ui\nkvHjNdOmFeZkMXD5/mUCDq+g5tL9at+AjRw6pOKULFumjREwko80Rr79VgVLOnUqxsOG1x8P9ugv\nmLEgzYs1Z8xf+k+m293/a9dCxYq6GwGjXj/e3jBvHixfrly/sRGv/kaNPD7ukFsbgol7JjL1TFGS\nNGgIr71m0zkXL6olopMnq4i9iQIfH7XBzGOWRGnDD9V/YPqB6Vx7GPdkumExVwvFS8aMqpu++EKt\nqLaLMmXUXg2nJ03WD7d1DT0Me0jp4a9wahJ479kLBQvGe879++rm37Yt9OrliFQ35NEj1Udr10Lp\n0nqrMQzfrP+G8MhwJjWepLeUhBEaCtmzq30i2bPrrcbw/P47DBkC+/bZFXBAuRCqV1dJrgxEoncN\nzTw4k9FHsuHdvIVNRiA8XG02qVpVeUoSHWnSQL9+akmpyVP6VO3D/GPzCbobpLeUhLFxowqKZhoB\nm2jbVm0vatfOzpzHDRt6dCBHtzQEkZZIZgb8RNOAK2rBcDyIQNeuKkz7xIn27RWIC6P6SF+ic2e1\nVnbfvufedhv9seCI/qxpstKtfDcGbx2snaAEYpd+A4Wcdpfr56ef1HLSF/dY2qS/fn3YssXm+F3u\nhlsaAv/T/nTZFU7Sd5pDvnzxlh8+HA4eVHlOPW6vQEJIkQJ691ZjZJOn9KzSE//T/py8eVJvKbYR\nFqYm/5s311uJW5E8uUo1O368uqcniKxZoUAB23epmdiNzWtn60+pLCG+6UROnYq37Lx5Iq+8InLl\nir0rdT2MkBCRnDlFDhzQW4mhGLF9hLRc3FJvGbaxbp1IpUp6q3BbNm0SyZ5d5OLFBJ7Yt69I//5O\n0WQvJNYw1Puv7KfG2hMkr98YCheOs+yOHSp70erVarm1CSppSa9eCQ7F4el0f6M72y9s5+DVg3pL\niR9ztZBD1KkDPXqonccJilTq4fMERsEmC9h+/vvyMGM6kSNH4ix3+rTKTbN+vRZ2N24CAgKc34iW\nPHqkHomsfeh2+l9AK/2T9kySRnMbaVJXQkiQ/vBwkSxZRM6edZqehOKO109kpMjbb4t88UUC9IeF\niWTIoHbrGwQS44jg4r2LZFvgT/I3q0PJkrGWu3VLxYoaMiTBgUgTB6lTq30Fw4bprcRQdCrbiRM3\nT7D9/Ha9pcTO9u0qhtSrr+qtxK2JilS6bl0C5guSJVNJ7TdudKq2xE681q/vqm/kTqa0Ivv2xVom\nNFSkalWR3r21tLseyIMHKr/f8eN6KzEUsw7OkjdnvCkWi0VvKTHz+eciw4bprcJjOHRIpaX95x8b\nT/j5Z5G2bZ2qKSGQ2EYED8MeEur3C8lLl4Py5WMsI6ISk2XPbgbcjJe0aVXGb3NU8Bwfvf4Rd0Lv\nsOZfA6YotFjgjz8Ms2zUEyhVCkaPVl368KENJzRooAKV2bUZwbi4jSGYs38GvXcIqQfFfuMaNAjO\nnIE5c9TQz1W4yzrql/jiC1i/nsC5c/VW4hBa9r93Em+G1R5G/y39sYhrfuw269+1S8UVimeRhKtx\n2+vfyquvBlKlCnTqpB4m4ymstiYfPuwSba7CLQyBRSyc/Xk4KfMXhjffjLHM3LnK57diBaRK5WKB\n7kr69NC9u+o8k6c0K9KMlElTsuhYHJHK9MBcLeQ0Jk1S0TqmTLGhcMOGHh+ETk9i9YP5n1wpZ3Km\nFMvatTEe37ZNLaQ4dsxZnjgP5vZtM19BDGw+u1kKTCggYRFhektRWCxqQ8zRo3or8VjOnFH3kd27\n4ym4erVKdGAASExzBLt++QHfdFnxatDgpWNnzqj1wPPm2RyA1CQ6vr5qYuXHH/VWYihqv1qbV31f\nZcZBg+Rw2L9f7QExL3KnUaCAynX8/vsq/UCs1KgBf/8NDzwgw50VwxuCo8FHabr8BOm/H/JSkKDb\nt9Uy0cGDoV49nQTi/j7SwIoVlXvo+nW9pdiFs/p/eO3hDNk2hMfhj51SfxQ26Y+KLaR1oCwNcPvr\nP5r+Zs2UIWjbNo754DRpoFIlO+JUGBfDG4JVs/tTNCQ1SVu3ee79sDDlLm3a1HCRYd2PTJmgdWuY\nMEFvJYaiQq4KVM5dmUl7dA5RLaKy75nzAy5h+HC1gijOlYdRq4c8BCM9XlhdXs+48egGe9/ISfVP\nhpCuZ59oBZU34/Zt9aDk7e1qqR7I2bPwxhvqXzMR+lNO3TxF1ZlVOfXFKf1SWh46pALM/fefIUcE\nnsjly2qV+rx5ULt2DAWOHFGG+d9/Xa4tOokiH8GyP4ZR7XJS0nXt8dz7o0ap38a8eaYR0Iz8+dVT\nzs8/663EUBTJXITmRZszcsdI/UQsXqz8FaYRcBm5cqlkNh99BFeuxFCgZEk1bDh71uXanIFhDUFY\nZBgZJv9KSOdPVEgEK8uWqSVe/v7KVWcEPMZH2qePitEbEqKrnoTi7P4fUHMAMw7O4OK9i06pP079\nIs8MgUHxmOv/BerWVXlMWreGiIgXDnp5qfg1HhJuwrCGYNWWX2jyTxjZej9LGLJvH3TpovYK5Mql\nozhPpWRJNR6eOVNvJYYiZ7qcdC3flf8F/s/1jR+0RkMtU8b1bZvQv796Do0x/1X9+h6zn8BIY82n\ncwQiwtyGOXgze0Xyz14BqKTzlSrB1KlqZt/ESezcCR9+qHyfiTqLz/PcC71H4cmF2dR2EyWzxR7w\nUHP69FHb5M2YKbpx8yaULas8EU2bRjsQHAxFi8KNG7r9Vjx6jmDPsfW8teMG+QaNB9Ry3bfegq+/\nNo2A06lSBV55RaVzM3lKhpQZ6Fu1L/229HNdoyKwaJGh3UKJgcyZ1c+hY0cICop2IFs2lSFx716d\nlGmHIQ3BmVHfEVytDEnyvUpkJLRpoxa09Oypt7KY8Tgfad++akY+3sArxsBV/d+1fFeOXT/GtvPb\nNK03Vv3796v8iqVKadqe1njc9R8DVaqoLK/vvw9PnkQ7UL++RywjNZwhuHjjP2r7HyP3YDUa+O47\nePRIDcvMRRMuokEDtRxrjQEjcOpIiqQpGFprKL039ebFpc5OwVwtZCi+/lrNTfbqFe1NDzEERkJE\nRBb1aiwny+QREZFffhEpXFiFwzFxMfPni1SrprcKwxFpiZTS00rL0n+WOrehqNhC8WTiM3Etd+6I\n5M8vsnix9Y2QEJF06dQBHcATYw09DntEid/Xk67/YDZvhv/9D1atUuFwTFxMy5Zw6ZKaPDZ5ShKv\nJIypN4bem3rzJOJJ/CfYy969arlKiRLOa8Mkwfj4qIFat25w+jQq/tObb7p9uAlDGYLA6f1InSw1\nD15rR5s2ap6sUCG9VcWPR/pIkyZVkzKjRrlcT0Jxdf/XzV+XopmLMmWfLTGL4ydG/W7kFvLI6z8O\nypVTaXBbtrRuufEA95ChDIHv5Bnc7NSVt5p6MXKkCvJnoiMdOsDu3XD8uN5KDMeYemMYsWMEtx7f\n0r5yiwWWLDFXCxmYzz5TgWB79ODZfgI3WVwRE1o8bjQExgPewG9ATI+QE4FGwGOgPXAwhjJy1Scp\nbUo85I03UzBSxx39JtEYOlTFuDE3mb1Et9XdSO6dnPENx2tb8a5daq3iP/9oW6+Jpjx4ABUqQL++\nwsf9ckNgoMtdGEbZR+ANTEYZg+LAB0CxF8o0BgoChYDOQKzBbJa91owMmVOYe2eMxOefq63cF50T\nXsGdGVhzIHOPzOX0rdPaVmzwkBIminTp1MCt57de3HnDvd1DjhqCN4AzQBAQDiwEXtzy9TYw2/r/\nPYAPkC2myhY8mszcua7NN6wFHu0j9fVVLqJx41ymJ6Ho1f9Z02SlV5Ve9N7U26F6ntMfGel2hsCj\nr/94KFkSxoyBYXvrE7Em8RqCXED0R8VL1vfiK5M7psoW+mc3TCA5k2h8/TXMmqXifps8x5eVvuTg\n1YNsDdqqTYWBgWrHarEXB9YmRqV9ewivUZcnGwOQsHC95ehCC+DXaK8/Al7M4uEPRM84vwkoG0Nd\nEtPfgAEDREQkICBAAgICnq6fbdeunVneleUbNpSA9u2No8dA5ecfmS+Fvyksm7dsNoQes7x+5T9u\n3jrG8lq9DggIkAEDBki7du2ia3AYRycZKgEDUXMEAH0BC89PGE8DAlFuI4CTQA0g+IW6RNx41t3j\nOXlSLeM6e9Y48b8Ngojwpt+bdCzbkU/KfGJ/RSEhkDOnmiTOmVM7gSZO5dbjW1SeUZmv3/iGrhW7\nuLRto0wW70dNAucDkgOtgJUvlFkJfGz9fyXgLi8bAbcmUfhIixaFqlVhhkGSuUdD7/738vJiUqNJ\n9N/Sn7uhdxN8/lP9/v5qGYqbGQG9+99RHNEfGhHKO4ve4d2i77rcCGiJo4YgAvgCWA8cBxYBJ4DP\nrH8Aa4CzqEnlX4BuDrZpohe9e8OPP0J44vSDxkW5nOVoWrgpgwIH2V/JvHkqBLiJW2ARCx1WdCBH\n2hyMqDtCbzkOYaRti6ZryB2oUwfatYOPP46/bCLjxqMbvDb1NQLaBfBa1tcSdvLNm1CggFqma+aM\ndgv6b+5PQFAAmz/eTKpkqXTRYBTXkElio08fFXbCYtFbieHIkiYLP1T/gR7reiQ8OumSJdC4sWkE\n3IQZB2aw6J9FrGi9QjcjoCWmIdCAROUjrVsXUqVS/myDYKT+71qhKzce3WDZiWU2nxMYGOjWbiEj\n9b89JFT/+jPr6b+lP6vbrCZLmizOEeViTENgkjC8vNSoYMQI3Dm2irNImiQpExtNpOeGnjwOf2zb\nSVeuwKlTKg+EiaE5dO0Qbf9sy9L3l1IkcxG95WiG4ecIIiIiWLhwIWfPnsViuiNewsvLCx8fH+rU\nqUMJV4UsjoyE4sVh+nQzMmAstFraiiKZijC41uD4Cw8dCteuweTJzhdmYjcX712kil8Vfqr/Ey1f\na6m3HEC7OQLDG4LNmzdz48YNWrRoQbJkyXSQZWwiIyO5cuUKixYtomHDhq4zBjNmKL/2unWuac/N\nuHjvImV+KcPOT3dSOFPh2AuKKKM6cyZUquQ6gSYJ4l7oParOrEq7Uu34tsq3est5SqKZLD548CAN\nGjQwtBEIei6jtWvx9vYmT548tGrVis2bN9tVh10+3o8+gmPH4MABu9rUEiP6qPNkyMP31b+ny6ou\ncU8cHzhA4P37ULGi68RpjBH7PyHEpz8sMowWi1tQI28NelY2aOJ0BzG8IXj06BEZMmTQW4bhyZkz\nJ3fvJnwzk92kSAHffgvDhrmuTTej+xvduf/kPrMPz4690O+/qyW5bpCAJjEiInRc2ZHUyVIzoeGE\nqCdwj8PwhkBESGLwcKT58uXTWwLe3t52J1SvWbOmfY126gQ7dugeN99u/U7GO4k305tOp/em3tx4\ndOPlAqGhMG8eNQcOdLk2LTFq/9tKXPr7bu7Lv7f/ZeF7C/FO4u06US7G2HdYE2OTJo2KTGomkIiV\nsjnK8lHJj+i5IQaXwp9/QunSkD+/64WZxMukPZP48+Sf+H/gT+pkqfWW41RMQ6ABes4RaIFDPt5u\n3VRCjn//1UxPQjG6j3pQrUFsO7+NTWc3PX/g11+hUyfD648PT9S/9PhSRv41kvUfrSdz6syuF+Vi\nTENgcI4dO0aDBg3IkiWLMV1k6dOrLGZmbtFYSZs8LVMaT6HLqi6EhIeoN8+cUZPtzV7M42SiN9vO\nb6Pb6m6s+mAV+Xzy6S3HJRjwzuJ+OHOOIHny5LRu3ZoZToz66bCPt0cPWL4czp/XRE9CcQcfdZPC\nTSiXsxyDtlqD0v32m4rXlCKFW+iPC0/SfzT4KC2XtGR+i/mUyVFGP1EuxjQEDpAvXz7Gjh1LqVKl\n8PHxoXXr1jx58kTTNgoXLkyHDh0oXry4pvVqSsaMKtn6mDF6KzE0ExtOZNahWew+u11lfOvYUW9J\nJtE4d+ccjeY1YnyD8dTNX1dvOS7FNAQO4OXlxZIlS/jtt984d+4cR44cYdasWTGW3bFjB76+vrH+\n7dy507Xio6GJj/ebb2D+fLh61fG6Eoi7+Kizpc3GlMZTmDu8FZGFCqgcD7iP/tjwBP3BD4OpP7c+\n/cOmeisAABTlSURBVKr144OSH+gtyeUk1VuAo2i1rNfesDk9evQgS5Ys+Pr60rRpUw4dOhRjuapV\nq3Lnzh0HFBqcbNmgbVsYO1blLDCJkRbFW1DwQA/m1k5NO73FmADwMOwhDeY2oO3rbelWIXGmS3H7\nEYGINn/2kj179qdzBKlSpeLhw4fafDAXopmPt1cv8PODYNcmoHMrH/X585S8EMrQLCfY+N9GwM30\nx4A76w8JD2H05dFUz1udH6r/oLcc3XB7Q2Ak4tp1uH37dtKlSxfr319//eVCpU4id24VSnnUqPjL\nJlZmzCBJmw+Z+t5MPl35KXdCPHiUaHDCI8NptbQVeTLkYXzD8R67a9gWTEOgAVH7COLa2VutWjUe\nPHgQ69+bb74Z67mhoaGEhYUB8OTJE80npDX18fbrpyZCr1zRrs54cBsfdUSEGjF16kS9AvVoVqQZ\nPdb1cB/9seCO+iMsEXz050cIQocMHUjilbhvhYn702uMl5eX5k8VQUFBpE6dmhIlSuDl5UWqVKko\nVqyYpm1oSo4c0KGDuds4JtauVaOmkiUBGFVvFHsv7yXgXIDOwhIXFrE8HY0tabmEpN5uP1XqUUhM\nDBgwIMb3TV7GMH0VHCzi6yty/rzeSoxFnToic+Y899b+y/sly+gscurmKZ1EJS4sFot85v+ZVJ9Z\nXR6FPdJbjsMAmmSHMkcEJtqTNSt07mxGJo3O4cNw4gS0avXc2+VylmNIrSG8t/g92zOamdiFiPD1\n+q85dO0Qqz5Y5fHxgxKCaQg0IFHHGoqNXr1g6VI4e1b7ul/ALXzUP/0E3btD8uQvHSr8oDClspei\n2+pudkeQ1RN36H8Roe/mvmw7v411H60jXYp0T4+5g35nYxoCE+eQKZOKQTRkiN5K9OfKFfD3V6Ok\nGPDy8mJak2nsv7Ifv4N+Lhbn+YgI3238jnVn1rGh7QZ8UvroLclwmLMkGmCEfASO4LR14N98A4UK\nwenTUDiOdI0OYvh17FOmqGW1GTPGeDhK/9L3l1JtZjXK5SxH6eylXSjQMYzc/1HuoO0XtrOl3RYy\npnr5OzCyfldhjghMnIePD3z5JQwYoLcS/Xj0CKZPV/0QD0UzF2VSo0m8t/g9c3+BBljEQve13dl5\ncSeb2m6K0QiYKExDoAHmHEEcfPUVbN0K+/Y5rQlD+3hnz4aqVaFgwViLRNffukRr3i7yNi0WtyAs\nMswFAh3HiP1vEQtdV3XlwNUDbGy7Ed9UvrGWNaJ+V2MaAhPnkjYtDBqk8hu74USoQ1gsMG6ccpEl\ngDH1xpAhZQY6ruzolpPHehMeGU6HFR04fvM46z9aT4aUZs7z+DANgQaYcwTx0KED3LqlJkydgGF9\nvKtWga+vGhHEwYv6vZN4M6/5PE7ePPksf4GBMVL/Pw5/zLuL3uXGoxus+/D51UGxYST9emEaAhPn\nkzQpjB4N330H4eF6q3EdY8eq0YAdu81TJ0uN/wf+zDk8h1mHZmmvzQO5HXKber/XI2OqjKxovYI0\nydPoLcltMA2BBjhzjmD27NmUL1+eDBkykCdPHnr37k1kZKSmbbjER9qokQqv8OuvmldtSB/v7t0Q\nFAQtWsRbNDb92dJmY82Ha+i9qTebz27WVp+GGKH/L92/RPWZ1amcuzKz3plFMu9kNp9rBP16YxoC\ngxMSEsKECRO4desWe/bsYfPmzfzojvH+vbxUnoLBg+H+fb3VOJ/vv4f+/SGZ7TekmCiauSiL31vM\nB8s+YO/lvRqJ8yyO3zhOVb+qtCvVjh/r/5joA8i5OzHG0jBM/JwYyJs3r/z444/y+uuvS4YMGaRV\nq1YSGhrq1DZ/+uknadq0aYzHjNxXT2nXTqRfP71VOJctW0QKFBAJC9OsSv9T/pJldBbZfXG3ZnV6\nAmtOr5Eso7PInENz4i/sgWDGGtKfqFSV69evd1mqyq1bt1KiRAkNP4WLGToUpk2Dixf1VuIcRNRo\nYOBAh0cD0Xmr8Fv4NfOj6YKm7Lm0R7N63RURYdyucXy68lOWt15O21Jt9Zbk1rj9zmKvQdqEfZYB\n9hnWHj16EBoaSvbs2Z2eqtLPz48DBw7g56dtGILAwEDXrZzInRu6dVPLSRct0qRKl+qPj7Vr4e5d\n+MD2vLe26n+r8FvMbDaTpguasvKDlVTKXckBodrh6v4Piwzj89Wfs/fKXnZ9uou8Pnkdqs9Q149O\nuL0hsPcGrhXZs2d/+v9UqVJxxUkJWZYvX06/fv3YvHkzGWMJVeA29O2rYvKvWwcNG+qtRjssFjUa\nGDwYvL2d0kSTwk2Y2Wwmby9421DGwFUEPwym1dJWZEiZgb8++Yu0ydPqLckjMF1DGhC1j8BZqSrX\nrVtH586dWbVqFa+99prW8l3/NJQ6tYq/8/nnEBLicHWGeZr74w81Kd68eYJOS6j+JoWbMOudWTRd\n0JTlJ5cn6Fxn4Kr+33x2M2Wnl6V63ur82epPzYyAYa4fHXH7EYGREBtSVSaULVu28OGHH7JixQrK\nly/viDxj0bAhlCun5gw8IW9BZCT8739q74ALct82LtSYNW3W8O6idzl96zS9qvTy2Jy7EZYIBm8d\nzG8HfmPOu3Oom7+u3pI8DnNEoAFR+wickapy6NChPHjwgEaNGj0dPTRp0kTTNnRbRz1+vArIdvy4\nQ9UYYh34vHkquqgdri579VfIVYFdn+5iwbEFfLryU91iEzmz/y/fv0ydOXXYeXEnBz474BQjYIjr\nR2dMQ+AA586do3bt2k9fDxgwgDlz5mjaxpYtWwgLC3su0f3q1as1bUM3cuZUkUm7dFH+dXclNFSt\nEho2zCWjgejkyZCH7R22cyvkFvV/r8+tx7dc2r6zEBHmHplL2ellqftqXdZ/tJ7sabPHf6KJXZiG\nQAPMWEMO0LWrmieYPdvuKnT38Q4bBmXLQo0adp3uqP60ydPyx/t/UDFXRUr/UpqN/210qL6EonX/\nX7h3gSbzmzBm5xhWt1nNDzV+wDuJcybfwQDXjwEwDYGJvnh7wy+/QJ8+cOOG3moSzvHjal/EhAm6\nyvBO4s2oeqOY8fYMPln5Cd3XdHe7HMgWsTBl7xTKTS/Hm3neZH+n/ZTP6UHzYgbGNAQaYOYjcJCy\nZaF9e/jkE7tCVeum32KBzz5TbqFcueyuRkv99QvU50iXI9wOvU3ZX8qy77Lz8kBEoYX+rUFbqTyj\nMguOLWB7h+30r94/QfGCHEH3698AmIbAxBgMGQLXrsHkyXorsR0/PxVNtUsXvZU8h28qX+Y1n8fg\nWoN5a8FbfLn2S248MuZo60jwEZrMb0KHFR34suKXbOuwjaKZi+oty0RHYoyl4RbxcwyC2/fVv/+K\nZM4scuiQ3kri59o1kSxZRA4f1ltJnAQ/DJbua7pLplGZZHDgYHnw5IHekkRE5N9b/8rHf34sWcdk\nlQm7J0houHNjdHkqmLGGTDyOggXVOvzWreGxwf3b33yjEu68/rreSuIka5qsTGw0kT0d93Di5gkK\nTyrM1H1TdZk/sIiFdWfW0WR+EyrPqEzeDHn5t/u/9KjYgxRJU7hcj8kzTEOgAeYcgYa0bas2mn39\ntc2nuFz/+vWwa5faQKYBrtBfIGMB5reYz6o2q1h7Zi25f8pN11Vd2X9lv8PpMOPTH/wwmIl7JlJs\nSjH6bu5Li2ItuPDVBQbXGkz6FOkdalsLDHX964S5s9jEWHh5wdSpUKYMLFtmU2IXl3L9OnTqpDbC\npXG/DFhlc5TF/wN/Lt2/xKxDs2i5pCXpU6Snfan21MlfhxJZSzgcz19EOH7jOCtPrWTl6ZWcuHGC\nRoUaMePtGbyZ502P3QHtzhjpG5GYnkwGDhzIwIEDXa/GDfGovtqzB5o2ha1boVgxvdUowsOhbl2o\nVk2FxvAALGIh4FwAC44tYNv5bdx8fJOqr1Slet7qlMtRjpzpcpIjXQ7SJU8X4w080hLJmdtnOHr9\nKEeDj3L0+lEOXD2AIDQt3JS3i7xNjbw1TNePk7B+Jw7fx80RgcFZuHAhAwcO5OrVqyRLlozq1asz\nefJkcubMqbc051Kxospz3KgR7NypdiHrTc+ekDYtDDJ+QnlbSeKVhDr561Anfx0Arj64yvYL29l+\nfjsrTq3g6oOrXH14FYAcaXOQImkKHoU94lH4Ix6HPyY0IpS8GfJSMltJSmYtyfuvvc+w2sMomrmo\n+eRvYhcxzoq7w0qYc+fOOa3uCxcuSHBwsIiIPHz4UD788ENp1apVjGXt7auAgAA71bmAYcNEXn9d\n5O7dWIu4RP+sWSIFC4rcuaN51YbufxGxWCxyL/SenLxxUo4FH5Ozt89K8MNgefDkgURaIg2vPz7c\nWT8arRoyRwQOkC9fPrp3785vv/3G1atXadiwIbNnzyZFCu2GwXny5Hn6fxHB29ubLFmyaFa/4enb\nFy5fhnffVUlfNOxbm9m/XyXSCQwEHx/Xt68zXl5epE+R3hATuybOwVw15ABRqSoDAgKcmqpyx44d\n+Pj4kD59ei5cuMCoUaM0/RyGjrXi5QUTJ4KvL7RrF2NwOqfqv35dTVj/8gs4IRcEGLz/bcDU7/64\nvyHw8tLmz0569OhB9uz/b+/eYqOo4jiOf5taIi3GFlOslQrReCMIaJTLCmQrl1RNKqGJPvgAgRDf\neDEghgdJWCMSNURMTNAXMNyJFxI0AUmbEFMhEmiDFEVrq2XBVLEoJobSjg9ntmxhLzN7ZnbOaf+f\nZNOZ3TmdX/+unN2ZM3NqqKqq8jRVZbZHLBbLuo+5c+fS19dHT08PZWVlrFmzpuC8ViotVbd5TiZh\n9eri3ak0mYRFi1QH5HOyGSFsotMRjAeOAD8Ch4Fs35m7gHbgFHBCY3+ZOU4wjwLV1NQMXUcwduxY\nrl69GtAfdqva2lo2btwY+K2urRhHffvt8MUXcOYMLFkCf/899FIo+Ts6IBZTcw+HfHLYivrnIPnt\np9MRrEN1BA8BR931TBwgDjwOzNTYn/HCmqoyXX9/P+Xl5UFFtktVFRw+rEYQxWLQ2RnOflpbob5e\ndQDr1hV9jgEhik3nZHEjkLoB+3agheydwYj+Pyk1H4ETwlSVu3btYt68edTV1dHd3c369etpCvgi\nK6uOkY4ZAx9+qC46i8Vg927i9fXB/f6DB2HlStixQw1dLQKr6p+B5LefzjeCu4Hf3eXf3fVMHOBr\n4Dtglcb+jBfGVJVnz54lFosxbtw44vE4c+bMYfPmzYHuwzolJWri+5071X2JEgnQPSR3+TKsXatu\nK33oUNE6ASFMkO8bwREg0/xw629azzWe9WngIlDt/r5zwLFMGy5fvnzo03VlZSUzZswYei11HD71\nugnrzc3NTJ48eei1ZcuWBb6/RCJBIpHwtP2lS5dISR33TH3aybWefozUy/bGrJeWEm9tpWXFCnjv\nPXjpJeLvvAMVFd5/36xZsHUrLW++CfPnEz95Empri/r3WFt/yV/09dSySfc3O8eNTuIedz2fN4BX\ns7yW8YKJ0X5BmR8j8oIyD5qbmx2nvd1xmpocp6bGcd5913F6ehxncDBzg8FBx+nudpxt2xxn4kTH\nWbrUcTo6ipo53Yiov8Vszo8BF5QdBJYBb7s/P8+wTTlQCvwDVACLgZFzfb5L5iyO1lD+AwegrU3N\nIbxpE1y7psb+T5kCDz4IPT3q9fZ2NQpp5kzYvx9mzzYjv6Ukv/10OoJNwD5gJWqI6Ivu87XAR8Dz\nqG8Mn6btaydqqKkQ4Zg+HfbtU8u9vfD99+px/jxMmgSNjWoOgQkTos0phEF0ThZfBhaiho8uBvrc\n55OoTgCgE5jhPqYCb/ndSUlJCYPFuoCoQCYcrxsYGCj4RLXt46iz5q+uhnhcnVjeskXdNG7hQuM6\ngRFbf0vYnj8Ixl9ZXFFRwZUrV6KOYbxkMknlKLwPjhBCn0nj+91zH8MdPXqU3t5empqaKCsriyCW\n2QYGBkgmk+zdu5eGhgamTp0adSQhRJEENR+B8R3B9evX2bNnD52dncYfIopCSUkJlZWVLFiwQDoB\nIUaZUdMR2KClpcXqkQeSP1qSP1o25w+qIzD+HIENst1x1BaSP1qSP1q25w+CdAQB6Ovry7+RwSR/\ntCR/tGzPHwTpCIQQYpSTjiAAJlxHoEPyR0vyR8v2/EEw6WTxaWB61CGEEMIibagLdoUQQgghhBBC\nCCGEMFUDaq6C88BrWbZ53329DTW3sZ+2YdPJ3wW0A6eAE+FFzClf/keAVuA/bp0rwob658rfRbT1\nz5f9ZdR7ph34Bpjmo20x6OTvwvz3/guo/KeAk8AzPtoWg07+LqKv/5BS4CdgMlCGOiH86E3bPAd8\n6S7PAr710TZsOvkBfgHGhxsxJy/5q4EngQTD/yG1pf7Z8kO09feSfQ5wp7vcgH3v/Wz5wY73fkXa\n8mPu9l7bhk0nP/isf9jDR2eiwnUB/cAeVC+WrhHY7i4fBypR8xh4aRu2QvOnz98c5cgsL/l7UfNJ\n9xfQNmw6+VOiqr+X7K1A6ta6x4GJPtqGTSd/iunv/X/TlscBf/hoGzad/Cme6x92R3Av8Fvaeo/7\nnJdtaj20DZtOflDTyH2N+odqVUgZc/GSP4y2QdHNEGX9/WZfyY1vljbWPj0/2PPeXwJ0AF8Bq322\nDZNOfvBZf50Zyrzwehc5k65nSKebfy5qop5q4AjqeN+xAHJ5pXMXPxPuAKib4WngItHU30/2emAF\nKq/ftmHRyQ/R1h685//cfcwDPkGdczJBofkfdp/3Vf+wvxFcAOrS1utQPVuubSa623hpG7ZC819w\nl5Puz17gM9TXvWLSqaEt9c/lovszivp7zT4NNbVrI/CXz7Zh0skP0dYe/NfwGOqD8Xh3O1vqn5LK\nf5e7HnX9h7kN+Bl1wmMM+U+2zubGCScvbcOmk78cuMNdrkCNqlgcYtZM/NRwA8NPttpS/5QNDM8f\ndf29ZL8PdRx4dgFtw6aTP+rag7f8D3Dj2/wT7vZe24ZNJ78J9b/Fs8APqDfM6+5zr7iPlA/c19tQ\nf1CutsVWaP77Uf/xTgNnMDd/DepY5BXUJ7pfUSeesrUttkLzm1D/fNk/Bv5EDfG7eZifDbXPlt+E\n2kP+/GtR+U6hPlE/ladtsRWa35T6CyGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEMM3/\nw9+0ov137RIAAAAASUVORK5CYII=\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0x11761d10>" | |
] | |
} | |
], | |
"prompt_number": 190 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"#Plot both\n", | |
"fig_both = plt.figure()\n", | |
"ax_both = plt.axes()\n", | |
"lines_ex = plot_ex(ax_both,'.')\n", | |
"lines_th = plot_th(ax_both,ls = '-')\n", | |
"plt.setp(lines_th[0],'color','b')\n", | |
"plt.setp(lines_th[1],'color','g')\n", | |
"plt.setp(lines_th[2],'color','r')\n", | |
"ax_both.legend(('n=1','n=2','n=3'),loc='best', fancybox=True, framealpha=0.5)\n", | |
"ax_both.set_title('Experimental (solid) and Theoretical (dashed) mode shapes')\n", | |
"plt.show()" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEKCAYAAAASByJ7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4VMXXgN8AoYQkbCD0XqQEkN6RonQsCERRLCCIoP6w\nN2x8YsMGoiiCgCiEjkqR3hUQkCbSe6ihJPTUne+Ps0s2IX3LvbuZ93n22XLvzj07O3fOzJwyoNFo\nNBqNRqPRaDQajUaj0Wg0Go1Go9FoNBqNRqPRaDQajUaj0WiAu4B9RguRRY4B92RwvDPwq5PX6Aes\nd3h/FaiUhXMLAHuBUCevn1UqAVYgTw6+Oxz4xZXCuJC+wFIXlGMFqmRw/BlgVAbHj5FxW8sKPwEj\nnCzDTj+Ma2upaQdEekGZLicnN1tWOQbcQDoc+2OMG6+XHuuBmgZctxLZ79CU7ZEeHwGfOCFTWgQh\n/1VmxAGTgDddfP2ccI3kNmUlZTt7lIzr0JNU4vY2MA1R7O4kP/A28FkG52TW1rKCK8pICzO1tVyF\nOxWCAu5FOhz7Y6gbr5cW+Tx8vbTwc1E5TYBgYLOLyssJ04EnAX8DZQAIJLlNHSdlO4vAdXWeGVlt\nX56Sx84DyAj7jIev60rM0tZyFe5UCBnxPTDH4f1IYIXtdTvgJPAWcB44ioz67BQAvkA6grO2sgqm\n+u7ryM0wkdunaseAV4FdyIhyIlASWAxcBpYDFofzmwMbgGhgB9DW4dga4APgT+AKshRQzHZsne05\nxnadZkBVYBVwwfbbpgJFUldOOnS1Xc+RUcA5m9y7gNq2z4sAPwNRtt/7Nul3So5LD8WA+bby/rbJ\n68hJpB5apFNWU2Cj7ZzTwDekvKGtyFLGAds53zocy4P8r+eBw0D3dK6RFRQySp6C/C+7gUYOx8sA\nc5H6OQL8z+FYAWA0cMr2GGUrC9JuX37ISPYQ8r/OBEJs5zu2gStIW+pHyiW72kibu4i057dsn2dW\nlxnRFVib6rPHkXvmAjAs1bHMrpW6nYU5HCsKLLT9vk2kXMaq6fDb9gHhDsecbWvDgdnI0uAVm1x3\nIPV3zvZbOzqcX8Z2vYvAQWCgw7FCyPLXJeA/ZPBFqu+m115S081WxhXbb3gl1fGXbfKdRtqCne7A\ndqQ+TgDvOxyrhNw7TyNt8nSqcjNqgwWRfuYCUp+bgRIZyO82jpL+GmUhYD8yArgL6QTK2I61AxKQ\nzsEfaIMsEVS3HR8F/IZ02oHIn/xxqu9+YvtuQW5XCEeRDr647ZrngG1APaQzWAm8Zzu3LFKRXWzv\nO9je2zv9NUjjqma71mqSl3QqcvtyQVVbnfgj66NrSbnOexS4O3Vl2ZhFykbQGdiKzBoAagClbK9/\nRmwNhW1y7Aeesh3rR8oOyVEhzLA9CiEd1UmSOzU7v5P+DdEQ6Vzy2K67B3gh1bXm22Quj9xg9uWT\nwciotizSmFcDSWQ+aEmrzoYDN5H/zQ9pHxttx/IA/wDvICP8yogC6mQ7/gHSPkJtj79sn0Ha7esF\n2/llbJ+NQ2YpkHYb6Edy/QchiuUlROkEIvUHWavL9GwIm4FeDu/DkEFJa9t1vrT9Dnu9ZXStjNrZ\nT8j90BjIi3Q8023HCiP33ZO2cusj93kt23Fn29pw5D/uaLv2FGTw85bt/UCk87azDhmA5Efu9Sig\nve3Yp8i9aAHKIQOIE7ZjmbWX1JwBWtleFwEa2F63Q+p8uE2+rsB1kgeEbUke0NVFBgcP2N5XQv7v\naUh91bHJb+9fM2qDzyD3XEHkXmiAtDuPcwxphNEOjwEOx5siGvkY8LDD5+2Qiivk8NlM5A/xQ5SD\n443QguQ/vh2y/pjf4Xg7blcIjzi8nwOMdXj/PMmG2zeQztWRJcATtterSTnaGoLMNCBrNoQeiDJy\nlC09hbAMGOTwvj3S0TdLdY28SB042k0G2WSF9BVCXiCeZMULYrNwPBfkpn83HRlT8yIwL9W1Wjq8\nn4mMtkFmTo6/ryNZs8GkpxCWObwPQ+wMIPV1PNX5byFr1iA3exeHY51s14C029eeVNcvjdRjHtJu\nA/1IrtNHkM4mK6RVl+kphAOk7LDeI7mDAAhAfkd6bc3xWneTdjsDmAyMd3jfFVHqIPd06g7+B5ss\nrmhrw0lpnL8P6W/sM+EgpI7sg49EREnZ+dgmP9zewT9Ncp+RWXtJzXGkHQen+rwd0gYd6/AcyQOA\n1IwGvrK9rmT7LY71NRL40fZ6L2m3wbxAf2RQUzed66TAnWvsCtFwq9I5vhnpyEORqZ8j0Yj2t3Mc\n+ZGhSGN2vIn8SFnJ55HKyIhzDq9vpnofi4zUQEZL4Uhjs5OPlL/pbKqyAkmfksDXyEgtyCb3pUxk\ntRNNyka2GhnxjLXJOQ9ZCgtARgmOjfgEMvLOiOLIb3NUnifSOC/IJktaVEcacSObHPmQ0aUjjvV1\ng+T6Kp2Fa2cHx//0BjJCso+Ay5DyN+QlufMqze11V8bhfer2VQkZQFgdPktE/uvMKE/KUawjWanL\n9EjdVkojI3A7N5Clk6xcaxVpt7OrtuOp7yXHe6cZKes5HzLACsX5tgYySna89gWSjdz2/iMQ+f8u\nISNyx+vZlxHLZCBLZu0lNb2QweunyDLWm8hSGkidO7YTx/bfzPad2siAowCyKuBIahntnXxF0m6D\nJZAltfLIbMyCKNm3bcdvwygbAsBzyA8/TfIo0U4I0jDtVLSddwH5o8Ns54QgP9Kx8efE6yG99fUT\nSIWGODyCyNh7IyM5PkaWQeogU8XHyfp/sIuUIwSQtd7GSH1UB15DOqwEUrqSViBlh5AW55FGUiHV\n91JTC9iZThnfIyPmasjve5us/74zWbh2VsmoDUQiI37H/zQYMUyDtLNKqeQ4nUHZJ5AZhWN5Acjv\nyawtniD9Ub4zdZm6rZxBOgU7ASQve2blWmm1s8w4gSzDpL53nkPuY2fbWnbu89OIrcNxsFYBWY+H\njNteZu0lNVuRmX9xZGk7daeeHhG288shfdo4bv+/U8tolz+jNpiILHnWRmbn95K8wnEb7lYI6XW0\n1RH/5b6IcK8j63qO/B8y0r0LMbjMRhrBBGQ6Vdx2XlnSX89zlqnI7KATMiqw2yQcR9vp/cbziMZ2\nNJYFIqOUK7YysnJj2fmDlAbtxsiowh8ZacQiysaKNMKPbNeriKxRT82k/CRk9DccWa4LQ9Z/HW+8\nssiNtSn1l20EIiPHG8iS1ZBMrulHcv3NQrzQ7DYEZ1wOM/Lq2WyT8XXkd+ZFFHRj2/HpyAjPbkN4\nj4xjGsYhit5+sxYH7re9TqsNOLIIGb2/gIwIg0heQshuXTqSuq3MQTqCVsgg7ANS3vtpXcv+v6fX\nziDjel6E3OeP2b7rjxhra+KatpYdz61IZI39E6Se70RsavZ7YhayDGS3ITjaLTJrL474I31aEeQ3\nXiW5rjIjEJmFxCNtIC336XdItrn0Q5ZcIeM22A6ZSeS1yZOQkUzuVggLSBmHMNcm2C/I9OhfxDI+\nzPaZ3bPhLMkeD7+Q7JkCsq5/CGkodq8gx9FQWiOHzEYTKtVr+/uTyLLXMGR6egIx7Ppl4bs3kE75\nL2S62hRRcg1tci9A6iOrIx27B4K9wwhG1m/tdpgLwOe2Y/9DFM8RZF12Gsnrpal9xx1fP480zLPI\nGmnqddJHEUNiQjoyvmo754pNthkZXCu1LBOQNeGdyCgrO3WTmrT84+3vk5DOsT5SP+dtstpnmR/a\nrr/L9thq+yy93/A1YrRbhvzujST/R6nbQLNUsl1FbCX3IaO5A8gNDNmvS0cWIh1vadv7PcjIPAK5\npy6RcvkhrWvZyaidZVTPV5GBVB9kJHsG6ZDt9hdn21pG107r/SPIzO80oozeI3np9/+QZcKjiI3w\nZ7LeXlLzmK2cy4gtoW8G8jnyLKKoryB2k5lpnLMW6ftWIP+B3TMzozZYChlMX0bawRrMG7SZJu3w\ngog+g+iI85HKOcXo6FFN9niajCOVzYxuaympRM6j9r2edmiFoNFoNHYq4SGFYFaNY5bUAxqNRmMG\ndJ+o0Wg0Go1Go9FoPIynk26lS7169dTOnem5HGs0Go0mDXYiHlAuwTQ2hJ07d6KU8srH+++/b7gM\nWn7j5dDye+fDm+Xn9vgtpzCNQtBoNBqNsWiFoNFoNBpAKwSX0K5dO6NFcAotv7Fo+Y3F2+V3JaYx\nKgPKtiam0Wg0mizg5+cHLuzH9QxBo9FoNIBWCBqNRqOxoRWCRqPRaACtEDQajUZjQysEjUaj0QBa\nIWg0Go3GhlYIGo1GowG0QtBoNBqNDa0QNBqNRgNohaDRaDQaG1ohaDQajQbQCkGj0Wg0NrRC0Gg0\nGg2gFYJGo9FobDirECYB54B/MzhnDHAQ2fuzgZPX02g0Go2bcFYhTAa6ZHC8G1ANuAMYBHzv5PU0\nGo1G4yacVQjrgegMjt8PTLG9/huwACWdvKZGo9Fo3EA+N5dfFoh0eH8SKIcsM2nchFVZuR5/nWcX\nPcuJyyconL8wEb0isBS0GC2aKVAKnnoK9u2DQoVg7FiwWOC11+DoUQgKghkz5DONmxgwAA4ehMBA\niIjQlW0S3K0Q4Pbt3dLdJ3P48OG3Xrdr107vdZoJF25cYP3x9aw9vpapu6ZyJe4KSSoJpRQB/gHE\nJcWRaE0EoM53dSgeUJzYpFjKBZVj9kOzfVJBJCXBI4/A3r1gtcI998DZs7BmDVy9KsetVlEKVqt8\np2FD6Y8uXYL4ePmseHEoXRquX5dzAwOlD6tdW/qv8+dFcei+LAsMGACbNknlhoXBgQPysP8B3brB\nihUQEGCsnF7AmjVrWLNmjdFiZEgl0jcqjwP6OLzfR/pLRkqTOVHXolSjHxqpgI8CVL4P8ql7ptyj\nPln/iar/fX3FcBTDUb1n9lZKKdV1alfFcFTY2DA1cdtEVXFUxVvnlPmyjJq5e6a6Hn/d4F+UcxIT\nlXrwQaXuuEOp8uWVatJEqcKFlSpYUCnpxpWqW1ep6dOVql8/+bNevZTq2lVeN26sVHS0lGf/rFEj\npY4fV+rYMXlt/1716kr16CHXsH9WsaJSX3+t1P33K3XXXVKGvTyNUmrzZqUCApIrrFkzpXbtUqpT\np+QKbNdOqSJFlKpSRSpcV2KWIYMBtlFUIn2F0A34w/a6ObApg3KMrltTs/vcbjXw94HK8qlFlf6i\n9K2OPXxWuFIqufNvPL6xir4pN1P0zWgVPiv81nv7OfXH1VdjN49VnX7ppPKPyK9KfVFKtZvc7tZ5\nZmXAAKUaNFCqRg3pTyyWlH1Nu3ZKxcRk3NnbP4uOVio8PGW/k9ZnGZVVq5ZSo0cr9cwzSgUGJstR\nr570eVar5+rGdNy8qdSbbypVooRUSOpKTF3ZUVFKVa2aXInh4cbJ7kVgMoUwHTgNxCO2gqeAZ2wP\nO98ChxC304YZlGV03ZqSnjN6qpBPQ1SBEQXUsBXDVNS1qCx1/mmR1jktfmxxS7lU/6a6unjjott/\nU3a4elWpuXOVevJJpfz9k/uLFi2UOns27Q47q519Vsiu4qhaVan+/ZUKDlYqf36lKlRQauFCmc3k\nGh54QDR1yZJK7d+f9cq3V6K/v1Lvv5/LNWrWwGQKwZUYXbem4mbCTTVsxTDl/4H/bbOBrHT+WcWu\nXO78/k7V/7f+KvSzUNVkfBPVemJr1XVqV0NmDVevKvXLL7IMlDevUsWKKTVypMwAstL5G0FqOdq2\nTVZeRYooVbq0UmFhsnTVpYvx8rqN5ctTau7sjPTtlfjff0o1bKjUE08oFRvrPll9ALRC8H3WHF2j\nqn9TXfWe1Vu1/6n9bbMBV5Jauew7v0+Fjgy9TQm5m4QEpRYvVqpvX+lAu3dXqmbNlP2KWTr/rJB6\n5rJ/v1KVKiX/ngYNZHnLp9i5U6nixcVOkFpzZ5fr15Xq3VtmGa1aabtCOqAVgu9yI/6GqvltTZV/\nRH7VcFxDFX0z2qWzgaxinzXk+yCf+mT9J8rqxqn7yZOyOhAQoFRQkKzLHzhgkyON5SBvIaNlJbtx\n2mIRe4hP2FEjI2VKN2OG6zR3UpJSpUppu0IGoBWCb3L6ymnVdEJTVfyz4h4fnafGroS2n9mumk5o\nqrpP666irkW5rHyrVamVK8XbJyREqWeflU4/9X3vTTOCrJD695w5k3LW0L69sfLlmJgYperUUerz\nz11ftt0bqXx532kILgQXK4TUMQJGYvt9uY9tZ7bRY0YPnm74NBsiN7Dk8BIal2nM8seXGx4rkJCU\nwHur3+Obzd9wR9E7KB1UOsdBbomJMHMmDB0KsbFQqRIsXgwVKogr+uLF0LgxLF+ee3z77b+7QgV5\nX7myBMvduAGFC3tBnEN8vPyIWrVgzBjwc3GXEhMDjz4KW7bAokXQtKlry/dy/KS+zdSPuwyjla0h\nzPlvjgr9LFTN+W+OUsq1BmNXUue7OjmeuVy/rtS338pouG1biQ3w9dlAVnH83QkJYkx3dKU1/SpJ\njRpi9Xe3pXzePGlAly657xpeCHrJyHdoMr6JKjCigGr5Y0vTKYDU2O0K/h/4qzGbxmTpO9evK9W0\nqTidlCih1NKltrK82DbgCbp0kfrJn1+p++5Tat8+oyVKhyVLUkYBult7vfiiVIh2R70FWiH4BiPW\njlABHwUYbi/IKvaZy5ZTW1Tl0ZXVh2s/TNfYHBen1NixSpUpo1RoqJ4NZBd7/Zw+Le62BQuK2+o9\n95iozq5dU6py5WTjjye0e1yceDFVqeIDVnjXgLYheD+f/vkpP+34ibJBZVl1bJVp7AVZ5czVM3Sd\n1pUEawKhhUJvJc979XkLf/4JJ05Ay5YwciS8+27utA24klatYMMGed2oEWzeDHmM3trq9dfh1CnJ\nDDhoEIwf75k/t3lz+PtveR0eDrNmuf+aJkbbELycL/76QlUbU02dunLKtPaCrBBzM0YFfxJ8a4bT\nbvh7KdI36NmA67AvsYWFSb6m5s2V2rbNQIG2bZM1wHPnPH9te2VYLLpRKb1k5NWM3jhaVfm6ioq8\nHGm0KC6hw5QOinfyq4KP9FXlKyTdSiCnbQOuxVGpJiUpNXGiUoUKKVW2rFIdO3q4rhMT5Q+eNMmD\nF3UgOlqpnj2VKldOqXXrjJHBRKAVgndy16S7VMERBb0iiVxWuHZNqTr1bypCDiv/l6ur95d8qWcD\nHqRly5RJ/TzG6NFyQaMNu1OnimJKSjJWDoPBxQrB6JXIXMGKIyvYdHITsUmxrDm+hkELBhktklMs\nXCj7AkSdLgjRVUj4cQWfrxvD3CMTmTVL2wk8QZEi8lytGuzfDy+9JLELbuXRR+HVV2Ufg8uX3Xyx\nTHjkEYl5mD7dWDl8DK0Q3MyBiwfoO68vDUo1AKBxmcaMv2+8wVLljJMnoVcv6XwmTBADJ0Dj6uVZ\nN3A5Q5cMpfbY2nSb1o2Y2BhjhfVxIiLEprplC/z7L0RFyYY+DRpInFiMO6p/xQqJLly3TgzJRpIn\nD3z1FQwbBjdvGiuLxi0YPftyOZduXFLVv6muJvwzwasNyElJkm46Xz5J73zmjHyeeomo0Q+NvMaN\n1hepXTt5Gal3bxcX/u+/EhhhNiNRz55Kffyx0VIYBtrt1DtISEqg67Su3FnyTr7q/JXR4uSYQ4dk\n/+GdO+HKFfksPW+/btO6sfjQYvzz+LNz8E5qFa/lWWFzOfY0GIGBMlOYMQPKlHFR4eHhULcu7N7t\nORfTrHDokLii/vcflExvM0bfxdVup3rJyE28uORF8ufNz+cdPzdalBxhtUpqmubNoUcPiSsAiScY\nn86KV0SvCMLDwnmz9Zv0+70fsYmxnhNYc2sZ6dgx6NBB9opetMgFBe/aBevXwyuvYDojUbVqslbW\nsKEb18pyD3qG4AbaTG7DP2f+oWW5ll65mX2fPrBkidjsli2DJk3kPstq/JFSikfmPkL+vPmZ0mOK\nfRSj8TDr10PXrlC0qOxtP2NGDvvyXr1kRPDKKy6X0SW0bAkbN8rrXBaspmcIJmfP+T1sOrmJGwk3\nWHF0hVd5FCkFU6bAvHniRBITA5/bJjgWS9YHh35+fkx6YBK7o3YzatMo9wqtSZe77oJ69SAyEpYu\nhSefzEEhO3ZImPSQIS6Xz2XYG2Xp0ulPXzVZwkxDN6+fIdxMuEmzH5uhUOyO2u1VKSliYmDwYPFY\nCQmBv/5yPt3EicsnqPltTaoVrUa54HI5TputyTl2u0KpUuDvL8q+ceNsFNCzp2iWl15ym4xOExMj\nbqhbt8Lx4xAQYLREHkPPEEzMq8teJax4GOv6rSM8LNxrlMH69VC/PhQvLvfUwoUy83Y291CFIhWo\nXqw6/0b9y+JDi71qtuQr2O0Ke/fC6NGiINq2hXbtsrDkvmMHbNokIwUzY7GI1mvVSqa4mhyjZwgu\nYt7eeby67FW2P7OdIgWLGC1OlkhKgmbNZFZQt664mbvaXmj3PArKH8TRF45SLKCYay+gyRZ790r8\niN11P8Ml9x49oH17eOEFj8nnFOvXw4AB8iPz5jVaGo+gZwgm5MTlEwxZNITpvaZ7jTKIioIuXcRr\nLz4e/vnHPbFGEb0i6F2rN/VK1WPc1nGuv4AmW9SqJQNpkGjnL75I58SePWXU/ccf3uO507q1rHcu\nWGC0JF6LVghOMnD+QOp+XxdLQQs1QmsYLU6WWLdOvPSaNRO3UsjYndQZLAUtzH5oNjN6zeCbzd+w\nIXKD6y+iyRazZ4vj0IMPQvfu4qZ6Gxs2yEhh2TLjo5Kzip+feEJ9+aXRkmhcgGHRfs5QZXQVr4nO\nHThQ9jTJn1+p2bPlM08mpJu/b76qOKqiunRDb4NoBqxWyVUXEKBU/foOe86cPSth6WaLSs4KCQmy\n1eamTUZL4hHQkcrm4cDFA9T5rg4J1gTTexRdvSobuF+8KO+Nctceungop6+eZnb4bB2fYBLsAchg\naxd1R8Dhw5Itz0xRyVnl66/FTS4XxCO42oZgpjvSqxSCVVlp+1Nb7r3jXv458w/j7xtvWmWwf78s\nD1y7Jj7pRu5eFpsYS9mvyhJaKJSqRatqV1QTYHdN9feHTz+I5+UxlSRwoW5do0XLGVevistcvXpQ\nrJi4WnmbUssi2qhsEr7b8h1KKV5r9RqzwmeZtlNbsEDcyF98UTIQuMKd1BkK5itIFUsVDlw6oF1R\nTYLdNXXzZoj8ei6H89dE1fFSZQAQFAQlSsgPWrzYe2wgJkDPEHLAsZhjNB7fmL+e+su0hmSlJOXE\nv/+KAXnxYvMMkuyuqMEFgjn2wjFCCoUYLZLGRkKTlgyLeZ0LrXswfrzMGryStm2TvSdWrjRP43cx\neoZgMEopnl7wNK+1fM20yuDmTQncPHBAHEU2bTLXICmiVwS9avWiakhV5uyZY7Q4Gjtbt+J//jTD\n/7mPlSslurlzZ+/xOk3B779DaKhEWPuoMnAHWiFkk7Y/tWXTyU2sPrbalJvAnDkjg6O8eaFFC/nM\nXS6lOcVS0MKch+bwy4O/MGzVME5cPmG0SBqAb76B556jcHBeKlWCS5fE67R/f6MFywEWi7ifzphh\ntCRehVYI2SDqehSbTm7iWvw1lh5earr17+3bJbbggQdg6lSYOdN4m0FG1C5Rm5ebv8zA+QPxluVC\nnyUqCubPl0hfZE8FENvsiRPJ3mleRa9eEk9x+rTRkngNWiFkgzdXvEnZ4LKA+bbC7NRJlEGxYvDc\ncxKjk50MpUbxWqvXiI6N5sdtPxotSu5m/HgZPRQtCiQbmvfvh3vukdxHZ84YK2K2KVwYeveGn382\nWhJNDjAsuCMrbDixQZX5sow6HnPcdFthfv118u6GIIFm3sTuc7tVwQ8LqmYTmqmuU7uaqm5zBQMG\nSANq3TrNIDSrVakPP1QqOFipZs0cAti8gY0blbrjDvkRPgguDkwzE0bXbbokJiWqhj80VFN3TjVa\nlBQkJSn10ktK1aqlVLt23hlYaqfSqEpeE/HtczhuxpzBaKJqVS8cdFitSoWFKbVundGSuAVcrBD0\nklEWGP/PeALzB/Jo3UeNFuUWN2/CQw/Btm0SlPnrr+a2F2RG9dDqAFQNqWqqpbhcwfnz8pyJ90F1\n+YvInx+GDfOAXK7Az082BZ80yWhJvAIdh5AJF25cIGxsGCufWEndkuYI1nniCfGqK1xYDMm+sLd4\nTGwMPWb04HD0YfY+t5fA/IFGi5Q7OHsWataEu++WTjOD0YR9G9XmzWVvhVWrZEtj03PuHNSoIdbx\n4GCjpXEpOnWFhxm0YBAB/gGM7jLaaFEAadO1akmaGfC9LWSf/O1JigcU54tO6eVl1riUL76APXuy\nPYIePx4+/FBivu64w02yuRJ7ateBA42WxKXowDQP8uCMB5mycwr/Rf1nipiD//6TlO8VKsh7s8UX\nuILPO37Ozzt/ZufZnUaL4vsoJYrgqaey/dVBg+C996BBA2jaNAu7rxnNgAF62SgLaIWQDkopVh5d\nSXxSPCuOrjA85mDDBnH/+/RT2LjRu+0FGVGicAk+vudjBi8ajFVZjRbHt9m8GRITk3fMySYDB0LZ\nsrBlixekDOrSBXbulHwuptdexqEVQjrM2TPnVnpmo2MOFi2S3Qx/+gkefdQ74guc4akGT5HXLy/j\n//Gx6Y/ZmDwZ+vUTw2sOqVpVnvPnlxmDacmXT2Istm71Au1lHNqGkAZxiXGEfRfGqM6jmLprqqGp\nre++G/78U5aH/vjDd5VAanZH7abJhCY0KNUAS0GLTpPtam7cgHLlJAVuuXI5LsZuaL7zTon/WrsW\nSpd2oZyupGVLmV43auSeDcQNQBuVPcDoTaNZcWQFCx9daKgc48bJ/ubx8fLe1wzImVHuq3KcunoK\ngPCwcGaF56If726mTZP8JosXu6zIjz6SYteskezTpiM6GsqXl5FVmzZGS+MStFHZzUTfjObj9R/z\nWcfPDJXjs8/kYdYEdZ6gVmitW886NsHFTJrk8qx1b78NPXuKF1yrViZcqg8JgeefF4WgSRM9Q0jF\na8te43LcZcM6IKXg3Xdh7lyZ1RYuLFNyb9zJ0FliYmPo+HNH8uTJw6YBm/SWm67i2DEZYZw6BQUK\nuLRopWQUasFyAAAgAElEQVQQfkomduab1W7fLlrryBGnbCdmQc8Q3MjR6KNM2jGJ/2v3f4Zc32qV\nXQu//hrKlBFl4OsG5IywFLTw99N/k2RNIuLfCKPF8R2mTJENM1ysDED6WPvOm8HBklHbVNSvL7v+\nbNlitCSmxEwq0vAZwqNzH6VGsRq83+797H0xLk5GHAcPyuPHH2W9skgRGD5cQjsrVoQ86etfqxUG\nD5b07VevymemG10ZxIbIDTw0+yH2Pb9PRzA7i1LSU1evLiHubthvOCZGXFJjYyEgAKZPl/05TMO7\n74pR/csvjZbEafQMwU08OONB5u6dy1+Rf2U9CG3XLgnTDAiQKfi330oocWKihMsfOAAvvyw71hQo\nIMnlW7W6bWE1KUniZvbtE90BudNmkB4ty7ekfeX2fLz+Y6NF8X42bpTRx7ZtbnO/tFhgzhx5XLwo\nAx0TrAYn8/DDMtKy6jgXM2NItkA7lk8tWcu2abUqtXy5Up06KVW6tFKVK9+eArJr19tTj7ZsmXxe\nqVJK/fmnUkqphASlHn1Uqfbtlbp2TU4PD/fOjKXu5NSVU6rYyGLq0MVDRovi3Tz3nKSD9lBq3CtX\nlCpeXKny5U2WNjss7NY96M2g01+7nlVHVqmAjwIUw1GNxzdOPx//wYPSugMClKpbV6mzZ9Pu/NPq\n1e3nNWyo1KhRSlWurJJKlVYvh0xUnUK3quunzHKnmJcm45uoYiOL6T0TckpCglIlSii1bZtHRx2O\nYyHTpM3+v/9T6n//M1oKp0ErBNditVpVy4kt1bit4zLe+Gb2bFEG1aqlbN1ZHdKnOi/+RoIane8V\nFUOwiiOfiuthljvFvNw16S69Z4IzLFkiO9x4GPtYyN9fqQkTPH75tNm3T2bqiYlGS+IU6P0QXMvi\nQ4uJiY1hYIOBzAqfdXs0bHy8RIe9/rqsudpTO9oX+bPqBuRwXkICPNw3H7P9winEDazkZfWuUEhI\ncM+P9BHsBuUA/wDG3TvOYGm8kIgI8S4y4LLh4bB6tcQqrFjhcRFup0YNMaqvX2+0JJp08Lh2tVqt\nqsG4BmrOf3PSPqFPH6WCgmSaffSofObkIn98vFK9einVvbtSD94drWYQru6tc1TFd+ouWxiePp2z\nH5MLiL4ZrXrP7K2ajG+ipuyYYrQ43sWNG0pZLIa3r7VrZaK9bZuhYggff6zU4MFGS+EU6CUj1zHn\nvzmqwbgGyprWfquHDytVoIBLFz/j45Xq3Vupbt2Uio1NpVuSkmRds3BhpZo0MZkFzlz8deIvVe6r\ncup6/HWjRfEeZs9WqkMHo6VQSik1d66Y4Zo2NbiZHz6sVMGCSrVp47X3GyZUCF2AfcBB4I00jrcD\nLgPbbY930inHoxWZmJSoan1bSy06sOj2g5GR4j0UFuYyb4yEBOn8u3ZV6ubNDE6sUcOEFjjzET4r\nXI1YO8JoMbyHnj2VmjjRaCluYXd0MryZBwaaRJCcgckUQl7gEFAJ8Ad2ALVSndMOmJ+FsjxakT/v\n+Fm1nNjy9tnB2bPSKX/2mct8QBMTZYPykBDxVs2wOLsFrkABMXxp0uTwpcOq2Mhi6szVM0aLYn6i\no5UKDjbVCNjezAMDlTpj5F9odxLxgAuuO8BkRuWmiEI4BiQAM4AH0jjPTBHRDJw/kEELB5GYlMjl\nuMvJBy5dgo4doU8feO01l+SNsFol6OziRQleXrYsk1gguwXulVfk+dKlHF/bl6kSUoV+9fvx3moz\nJ+E3Cb/+KrsrmSj/SUQE9O4NnTrB0KEGxohNniyBpcuWmap+jMJZhVAWiHR4f9L2mSMKaAnsBP4A\nwpy8ptOsP76e2MRYNp/enLwTWr9+UKkSXLsmXkUuQCkYMgSOHpWNmiALEch2JfThh6KcunUTmTS3\n8fZdb/PLrl9oMr4J3aZ1M8U2p6Zk+nRDvIsywmKB2bMlXfaZM/DmmwYJ0qqV5OqOjMz83FxAPie/\nn5XpyjagPHAD6Ar8BlRP68Thw4ffet2uXTvatWvnpHi3k2hNJPKK/Pm3dkKzWmHhQkkidPUqPPOM\n00mElIIXX5TsFsuWSXqKbGUt9fOTDdBr1ZJNlJs2lURHehRzi5BCIZQNKsvWM1sBGLRgkN4zITVn\nz0oit99/N1qSNClYUERr2VLGY88+62EB/PxkO8LffpNdfkzOmjVrWLNmjdFipEtzYInD+7dI27Ds\nyFGgaBqfe2TNbcqOKarVxFYpg9BGjhSXPBetJQ4cqFS5crJse+yYkwK3aePVRi930+mXTorhqOrf\nVNfRy2nRooVSJUua3ovm8GHxPKpTxwBRV6+WDAJeCCYzKucDDiNG5fykbVQuSbINoSlib0gLt1de\nYlKiumPMHWrlkZXJH65dKzfMrl0uC+evWNGFfbhjmOfcuU7L5mtE34xWzSY0Uw1/aJi2+3BuJzjY\nawYUDRoYJGpCglLFiil1/LgHL+oaMJlCAFkG2o8Yl9+yffaM7QHwHLAbURYbkFlFWri98qbtmqZa\nTWyV3HGcPatU2bJK/fGHy67x5Zcy0nGZ44Ld02nBAgm1P3nSJXL6EknWJNVgXAM1+7/ZRotiLk6c\nkIGEl3jR2Mc++fMrtXevhy/+xBNKffONhy/qPJhQIbgKt1ZckjVJ1fq2llpycIl8kJio1N13K/X2\n2y67xvjxMjtw4WQjJSNGKHXXXTKi0aRg2aFl6o4xd6j4xHijRTEPo0Yp1bev16TPtY993n5bqUaN\nJPuvx5g3T6l77vHgBV0DWiHkjFm7Z6mmE5omzw7efVdyTrsoudX06UqVKaPUgQMuKS5tkpIkkOHN\nN914Ee+lw88d1HebvzNaDPPQsqVLZ7+ewmqVAXvPntLkPcK1a5Km5tIlD13QNaAVQvZJsiaput/V\nVQv3L5QPuneXeendd7tk5LRgQbIZwu1ERUl6C0Osb+bmn9P/qFJflFJX464aLYrxREYqVbSoUnFx\nRkuSI2JjZTJcr55Sbdt6qKnfd59SU6e6+SKuBZMFpnkFv+/7Hf+8/nS7oxvcvAmrVkkW01WrnN4x\n6t57Zc/uKlVkc3G3U7w4VKsGu3e7bccrb6Vh6Ya0r9SeURtHGS2K8cyZA/ffD/nzGy1JjihQAObN\ng/37Ye1aDzX1Hj1M657rKcwUQWxTeC4vlOKfF6dUYCkqFKnAvO3VKThtpvhnN24My5fn2Lf/n3+g\nRYvkrNUe2wO5Wze5Q0JDZQ9nHZtwiyPRRwgbG0bD0g2xFLQQ0Svi9pTmuYFWrSTXdLduRkviFG3a\nSIbqGjVg0yY3N/WoKNlr+tw50UhegN5TOZssPbyU2MRY/jv/H2fXLSb2x3Ey5AgPd0oZ7N8vs4O6\ndeW9R/dAjoiQ0Uz+/LBjh4cu6h1UCalCaEAoG09uZPGhxcmR6LmJkydlg+4OHYyWxGnmz4fWrWUb\n8suXMz/fKUqUkBt61So3X8i8+LxC+OTPT6hatCp5kyBicQD+X4ySUYATOYoiI6FzZ/j4Y1i50mnd\nkn0sFslP8/338PTTsgymuUWNYjUAqFuirkSi5zbmzvXq5SJHLBaZIbzxhvwkt2dxSUiQ5GPduokW\nymX4tELYELmBE5dPsPKJlUw5XJeq1ZtReMBgp8q8cEEScv3vf9C/v0vy3+Wc+++Hhg3hgw8MuLh5\nmfvwXGqF1uLOknfmzuWi2bNllOJDvPii5AN77DE3J8KzWiW5Ui61z/m0DeH+6ffTpVoXnrV0lMX+\nLVugcuUcl3ftmhiPCxaEOnVk5cbw5ftz5yQHy5Il0KCBwcKYh5jYGKp/U521/dZSq3jq4Hkf5tQp\naQ9nzvjEDMGR+HioWBH8/d14/9ntc2Fh8NdfJrjBM0bbELLI7qjdbD61mf71+kHbtvLHPvdcjqeB\n8fHiTZQ3rywZmWYAUbIkjBwJAwdCYqLR0pgGS0ELr7Z8lXdWp7cfk48ydy7cd5/PKQOQn1S5spvv\nv4gI2Tf9wQdNrwzcgc8qhJF/jeSFZi9Q6NcFksH08OEctyKrVbJjFy4M9erJZx41ImfGk0/KTKFm\nzVy79pkWzzd9nk0nN7Hl1BajRfEcs2b53HKRI/Y+Ol8+eP55N11g7NhcbVg2Cy4L1jhy6YgqOrKo\nirl0RnJJNG2a43wuVqtSQ4dKkMyNGy7bRM31NG7sNUnMPMn3W75XHX42x17CbufkSdmWz0uD0bKC\n/f6bPFlu7XPn3HCR2FhJCnj+vBsKdy3owLTM+XLjlwxqOIgi30+CRo1g6dIcuwJ9+imsXi3ub4UK\nGWxEzojixZOfTTN1MZ4BDQZwNPooq47mghFfeLisq/To4bOzRPv916+fGJh795blXJdSoAC0by/9\nhsYwXKIxz149q0I+DVHnDu6QlLaHDuW4rDZtZGvj9u1NOCNITXS0Uvffr1RoqFK7dxstjamI2BWh\nin9WXLWZ1EZ1ndrVd/dNKFIkV80Sk5Ik28SQIW4ofPx4pR55xA0FuxZcPEPwOS+jBuMaEHU9ikkL\n8tC24YMU/GpMjspZtEjsSh6PQnaWr78WW8mSJZmfm0uwKivBnwRzPeE6AOFh4b63s9q5c1CunDgW\nOBmB701cuSKeR/aMLi7zPLJ7a0VFiSeJSdFeRhlwNe4qu8/vpsTB09TbepJn6uVsn9S//5YpaaNG\n8t5UBuTMePZZOHZMlIIGgDx+eagZWhOARqUb+Waw2m+/SVyKx6MkjSU4WJyCDh50sedR2bKSnGzT\nJhcV6B34lEKYuH0ioYWKMWoJTOpRka8fnpztMg4ckCXYSZOkgXnd/eXvD19+CS+/nDy90bD88eUU\nLVSUQY0G+Waw2pw58MgjJjVwuZfQUHn294f/+z8XFty9O/zxhwsL1GQHp9bS4hPjVYVRFdSezg3V\nzQJ5VXyH7Ke2PntWqSpVZPnQq7FalerYUakxY4yWxFSsOrJKVf26qu9tonPhgnjFeHRHGfPguLFO\nixYudLL680/Jv21i0F5GaTNnzxyqBVWi1rq9FIxLwn9F9lJb9+sna5B58viAG7efH3z1Fbz+umS9\n1LEJALSv3J7KIZWZvCP7M0dTM3++JLIrXNhoSQzB7nn0wQdQqhQMHeqigps3lyi4kyddVKD58QmF\noJTi8w2f89XZeuIbCtla+E9IkHvq2jU4dMgkEcjOUqcOhITAhg0mCqs2no/u/ogR60YQmxhrtCiu\nY+5c6NXLaCkMJ08emDIF1q2DCRNcUGDevJLFMhfZ43xCIaw+tpqkmze4c/zv4maQjYV/pWDwYIl8\nBC8zIGdGDcn6Sb16PvSjnKNp2aY0Kt2I77d8b7QoruHKFekB773XaElMQVCQJAIeOlTyPjo9Oe7e\nXVwONR4nx+toXaZ2UX+9/qhS3bpl+7vDh8uG3pGRJo1AdoboaKXuuEOpQYOMlsRU7Dq7S5X4vIS6\nEnvFaFGcZ9o02RJWk4LatV0UknH+vNhnYmNdJpsrQdsQUvLvuX85cGIHLX5ZDSNGZOu7kyfDTz/B\nwoXiwu1zDhoWC/z5p3igHD9utDSmoW7JugTlD+LO7++k27RuxMR6sX1FLxelSYUK8hwYCN9950RB\noaFQu7bMwnIBXq8Qvtz4JRMi6+PXsqXMEbPIsmXw5puyPFiqlBsFNJoSJWDIEL1nQiqKFSrGscvH\nvHtXtevXZWn0/vuNlsR0RERIWotmzeCTT5wsLD5eNj/JBc4Z+YwWwBlOXTnF6p2/M2lOPli9Jsvf\n69ULFiwQ/eHTysDOq69K9M7+/cl2hVxOsYBiAJQKLOW9gWqLF0uPV6yY0ZKYDotF9gm6dEk21mna\nFB5+OIeFKSWRy6dOiXOGV6QsyBlePUPoFtGN5zclsaZ6fmKqls3SdyIjxUaUkCARybnC+cZikUC1\n9983WhLTENErgu53dCcuMc57PY70clGmFC0q1fT887B7dw4LKVFCnuvW1c4ZHiRbxpSrcVdV8Tfz\nqvOFUFX/hwqflbnl6PJlperWVapGjRxnw/Zerl1TqlQppbZvN1oSU/HSkpfU84ueN1qM7NO/v1J5\n8yp1d/YDMHMjP/8stuFWrZTq2jWbVRYdrVSFCkqNGuU2+XIKLjYqm4lsVcSYTWPUlIb51KlA1J91\nglXMmWMZnh8fL8G7Q4YodemSD3oUZYUWLZQqWjQHd4Tvcu7aOVV0ZFF1NPqo0aJkD5e50eQeypRx\nosp++UWpBx90i1zOgFYISiUmJaoGn1RS8f55s/QPW61KDRgg3nkJCa74G7yUu+7SnUgavLPyHdX/\nt/5Gi5E9ypbNhdNc5+jcWaqsbNkcVNm5c5JePN5caU/Qbqew4MACBm9MIF8Jm0U4k2iypk1h5kxx\nFrh2zUNCmpHAQHkuUkSvhTrwSstXWHBgAfsu7DNalKwRHy8eRt27e1nmRWOZMUOqLDERtm3L5pdL\nlICqVX0++6lXKoTvV33GE+uv4Pfbb5lGJUdEwL//iiJYvjyXGJHTIyICevaEgAA4etRoaUyDpaCF\nV1q8wnur3zNalKyxerXsn71woVYG2cBikSqbNg369s1BiqLOnX1+FzWvUwhbT2+l7eK95O/UTWYG\nGUST/fknvPiiuJ2Bj6WlyAkWi7hcvP46fPih0dKYiv81/R/rT6xn+5ntRouSOdq7yCnuuUdSW4SH\nZ3P7zS5dfH7jKa/bMa3/9If59vnFFF7zl7iBpcPBg3DXXfDzz7JkNGiQKAM9oAJu3JDp77JlGdZh\nbqPVxFbsu7CPZuWaEdErwpz7JiQmQpky4jNdubLR0ngtVqvsiHjokOy2FhCQhd3WEhLk5AMHkl1R\nDSZX75gWeTmSktMXkL9Vmww7sosXZa1wxAjo1Ck5Pa5WBjYCAiQu4aOPjJbEVOTNk5dLsZfMHb28\nfr3s5KWVgVPYM6MePQpr12YxIbC/P7RvL2vPPopXKYTv/xzNmxvy4v/e8HTPiYuTHc969oSnn/ac\nbF7HkCGyFr13r9GSmIbA/IG3nn+49weDpUkHvVzkMiyW5Gw3tWtncTnZx+0IXqMQ+v/Wn+jxo9lf\nxp+YOtXSPEcp2QZg3z7YudPn0444R2AgvPCCniU4ENErgt61elMuqBwbIjcYLc7tWK0wb54k6dG4\nhIULxbaYmJicAj9DOneWpVar1e2y5XYy9Let+VVVddiCavlU+lHJ77+vVFCQdrXPMpcvKxUaqtSB\nA0ZLYip+3furqvd9PZVkTTJalJT8+adSdeoYLYVPMmCAUn36SMxSplSvrtS2bW6XKSuQG+MQrMpK\nx5VHyZ8En20OZsJdn992ztSpsiaoPYqyQXAwVKwo1vdckMkxqzxQ4wEK5ivIzN0zjRYlJXq5yG18\n842sLIwdm4WTu3Tx6WUjs5CuFlywb746WMxPWdMZ+q9bp1Tx4krt3p284bYO3swiLVvqKVUarDyy\nUlX9uqqKTzRJZKrVKvl0/v3XaEl8lkOHpB/ZtCmTExctUqptW0+IlCnkxhnCxh/epai1gPhWpRr6\nHzok/sTTpolhSHsUZZMiReS5RAk9pXLg7sp3UzmkMhO3TzRaFGHrVihYUBq5xi1UrQr160PbttCh\nQwYT5rZt4Z9/4OpVj8rnCUyvEP499y/3/baX4E++ui0q+Ykn4M47ZVMj+1KRJptERMh+vHFx2YzS\n8X0+vvtjRqwbwY2EG0aLIstFvXuDn5lCh3yP+Hi5FVauzMBLsXBhGUi1aOFzS62mVwgLp7xNzZsB\n5BvwdIqhf3w8zJ8PN2/Cf//l8pQUzmCxyG5BjzwCX39ttDSmoknZJhTIW4A639UxdqvNp5+W/2bN\nGp/qfMxIQIA8BwZmspdUgQLS8WQpgMF7MLVCOH/9PHdOWUzeV99I4ROmFAweLP8JaAOyS3jtNfjh\nB7hyxWhJTEVoQChHY44aG6y2fTvExsKGDT7V+ZiRiAhZiPj7b5g4EVatSufE0qXl2cc6H1MrhLnz\nPuKuU/kIGjI0xecjR8KOHZKxMJPcdpqsUqWK+Fh//73RkpiK0IBQAEoWLmncVpvR0fLsY52PGbHb\nIMPC4Jdf4LHH4PTpNE5csEBsOhMm+FTnY1qFEJ8UT5FvJ3Bz0FPJ8zhkKXXsWPk/ypbVBmSX8uab\nMHq0rMNpAAlWu/eOe4lPiudqnAFGRLsPWIcOeuTjYTp0kID+Pn0kcC0FISHw0EMylfAhzGShsnlR\nCfOWf0OHB18m+PjZW5uIb9kiNpylS5NDzjUu5r77oGtXePZZoyUxFe+seodTV08x+YHJnr3wtm3S\n8Rw8qA3KBmC1SqiOn59kQUiRAG/aNBmhzptnmHy5Irnd0/OfJnLEKyxsVpSYwnkBePRRaN0aKlSQ\n1Q2Nm3jrLfj88zSGRLmb11q+xh8H/+Dfc/969sKzZolC0MrAEPLkkT4nMjIN+3GHDpIPzIfuFVMq\nhNrj5vDElgRKHo7ixRn9uHpVPIri42XApO1qbqRlSzFg1q3rcy51zlCkYBHeav0Ww1YN89xFlZKt\n/h56yHPX1NyGPVQnXz545x2HAyVLQqVKsHmzEWK5BVMqhMDzVzhXGO45Dt/Pz8ujj8qSHWi7mkco\nXlzi+H3Mpc5ZhjQewu6o3aw7vs4zF9y6FfLnh3r1PHM9TZrYPY+GD4eBAyVO4RadOkmyOx/BdAoh\n8vxhuu23Uu4KJDZqwDtlpnH9ugQGao8iD1G2rDxXq6a1rwMF8hXgw/Yf8saKN1BZ2MzJafRykSmw\nex4NGya3xmuvORz0MYVgppamlFLMer079ZbtpEb1loxv+RNffh/Apk3JMwSNB4iJkQReefKI77vm\nFlZlpcTnJShZuCQVLRXdt7OaUrIcsXCh3tXORMTEQKNG8OmnMkAlNlbSvpw4YchI1aeNyjfir1Pn\nl6UEvfshK5+ZxXufBrBwoVYGHsdikQ2pz57VCiEVefzyUDaoLHsu7HFvsNrmzeJuXaeOe8rX5Aj7\nbOGJJ2Rr3m49C5LQtFUGEWzehakUwprxwwjwD+DFGU/Stau4exUvbrRUuZR8+eCVVyQKUJOCssGy\npFYuuJz7gtX0cpFpadRIdjHdskXMbBEXfGfZyFQKIeTbiVx4eggLF/mRkCCDJG3TNJD+/WHTJtiz\nx2hJTEVErwg6V+3MzYSbJFmTXH8BqxVmz9beRSamalV5Dg2FB7/vJMFRnrAruRlXKIQuwD7gIPBG\nOueMsR3fCTRIr6DK5+J4fdkHvpomxPsICID//U/iEjS3sBS0sOSxJTxU+yFGrBvh+gv8/TcEBelU\n1yZm+nTZuz0kBH47ECY+8YcOGS2W4eQFDgGVAH9gB1Ar1TndgD9sr5sBm9IpS33bqpfq0UOpixf1\nJjem4dIlpUJClDpxwmhJTMe5a+dUsZHF1P4L+11bcJ06SlWsqFTXrvomMDm7dskutJd69FPq2289\nfn1MtkFOU0QhHAMSgBnAA6nOuR+YYnv9N2ABSqZV2PTr3zJ1KhQtqnMUmYaQEFk6GjXKaElMR4nC\nJXit5Wu8sSK9iXEOSEqCAwfg+HEdB+IF1K0rE+iPNnci8Q/vtyM4qxDKApEO70/aPsvsnHJpFfbc\n+U5cPHXcSZE0Luell+C776BVKx29nIoXmr/A9jPbWXtsrWsKXLNGsmiCXjP1Evr1g4S2HYhdvJw/\nyxRhRaXinDjgnf1YvsxPyZCsTldSu0qk+b39p/5lfou61Pjfy7Rr14527do5JZzGRZQrJzMFuwvq\noEEyhdNQMF9BPrnnE3rP7k1YaBiF8xd2LjZh2jR4/XXYuVOUgZ4mewUDP7/MtvUJJF0rRoczJ1lw\nb2sqHIjM/IvZZM2aNaxZs8bl5dpx1qetOTAcMSwDvAVYAUdfxXHAGmQ5CcQA3RY4l6ostaVEACXW\n76FC9YpOiqVxOW3awPr10KCB+FzrjuoWSiksIy1ciZPNhcLDwpkVngOFefMmlCkjO3GVKeNiKTXu\n4uKNi7SY2IIu888wZsU1tnqwHzNbYNpW4A7EqJwfeBiYn+qc+cATttfNgRhuVwYAWhmYmfnzJW7/\n4Ye1MkiFn58fdYpLAFn9UvVzHpuwYIFsDq6VgdcQmxhLj5k9eLDmg7w6djcL7ijn1f2YKzRLV2A0\n4nE0EfgEeMZ27Afb87fILOI60B/YlkY5NqO5xrRs3iwbvR8+DP7+RktjKmJiY2j4Q0O6VOvCd92/\ny1khDzwAPXvCk0+6VjiNW7AqK33n9SXJmsSM3jPI4+f5sC5XzxDMFAapFYI3cM890mE98UTm5+Yy\nzl8/T+3varP6ydXULpHNGIILFyTaKTISgoPdI6DGpby98m1WH1vNyidWUsi/kCEymG3JSJPbePNN\nSWdhtRotiekoXrg477Z5l6FLhmY/G+rs2eLBpZWBV9Bmchu+2vQVhfwLEZcUl/kXvAStEDTZo0MH\nKFRI1rs1tzGkyRDOXz/P3L1zs/fFadOgb1/3CKVxKUsPLWXTyU3EJsay6ugq9yU4NACtEDTZw89P\nZgmffOITuVtcTb48+RjTdQyvLHuFGwk3svalI0dg/37o3Nm9wmmcZsfZHTz+6+M0LC2bujcu09h9\nCQ4NwPQ2hMTERGbMmMGRI0ew5sJlijx58lClShX69OlDvnzOho24iKQkCAsTP/m2bY2WxpRU/boq\niSqR2sVrZx6X8OGHkmr82289J6Am20RejqTlpJZ81ekrOlbtyKAFgxh/33j37IeRRXKdUXnlypWc\nP3+eXr164Z8LPVsSEhKYM2cOJUqU4J577jFanGQmTpQ9BatWlSR4ERHaHdWB5j825+9TfwOZxCUo\nJcp18mRo3tyDEmqyw+XYy7Se3Jon6z3Jqy1fNVqcW+Q6o/L27dvp3LlzrlQGAP7+/nTu3Jnt27cb\nLUpKHnsMoqJg7VqdcycNihYqCkBQ/iB+uPeH9E/ctg0SEqBZMw9JpskuA34fQKWvK3El7goDGgww\nWhy3YnqFcP36dYoUKWK0GIZisVi4fv260WKkpEABqFJFXuucO7cR0SuC3rV6U7VoVX7f/3v6J/br\nJx0ioG4AABczSURBVAqhe3edI8qEKKVYdHARMbExnLh8gmcWPpP5l7wY0ysEpRR58pheTLeSJ08e\nz2zqnl1WrBDFMGaMXi5KhaWghdkPzWbi/RN5Y8UbnL9+/vaTYmPFmHzihJ5lmZS3Vr5FXKK4lfqa\nATktcndPq3GOsmXFjqCNoenSsHRDHqv7GK8se+X2g7/+mhx3oGdZpuObv7/h132/snXQVsLDwln+\n+HJDDcieQCsEjXM8+6zsJ3vwoNGSmJb/a/9/rDu+jhVHVqQ8MGGCJNMPD4fly/Usy0TM2TOHT//6\nlKWPLaVq0arMCp/l88oAtEIwjISEBHr37k3lypXJkycPa9e6KJ++pwkOhueeg08/NVoS0xKYP5Cx\n3cYyeOFgbibclA8PHYLdu+HRR/VuUCZj3fF1PLvoWRY+spBKlkpGi+NRtEIwkDZt2jB16lRKlSpl\ndx/zToYOhd9+k12+NGnSvXp3lFLU+LYG3aZ1I3bct5IPqkABo0XTONB7Vm86/NyBSpZKVA6pbLQ4\nHkcrhBxSqVIlvvzyS+rVq4fFYqFPnz7ExWU9p4m/vz9Dhw6lVatW5M2b142SeoCiRWHgQFn+0KRL\nycCSRF6JZPn+xcT+OE7qTGMajkYfZcGBBSRYE9hyeotPpaTIKl6tEAYNgnbtnNvVMadl+Pn5MXv2\nbJYuXcrRo0fZtWsXP/30E5GRkVgsFkJCQtJ8zJgxI/PCvZGXX5bgtDNnjJbEtNjXoHsezEeh2vWh\nZk2DJdLYOXftHJ2mdqJa0WpA7vAoSguvVggHDjgfF+VMGUOHDqVUqVKEhIRw3333sWPHDsqXL09M\nTAzR0dFpPvr06ZMzQc1OyZKysUvTpnrf5XSI6BVBeFg4b+0LZUaLIKPF0diIiY2h89TOPH7n4/z1\n1F+5xqMoLbxaIQQEyLMzHnvOlFGqVKlbrwsVKsS1a9dyJoSvEBQEJ09qn/p0sBS0MKvp59wZGc+H\nxfey/PByo0XK9dxMuMn90++nTcU2vNvmXfmPcolHUVp4tUKIiHDeY88VZTgSGRlJYGAgQUFBaT6m\nT5/u/EXMSkiIPJcsqX3q02PiRPI82pfvek9mwPwBRN+MNlqiXEtCUgI1x9Zk/4X9HLx4kMtxl40W\nyXC8WiFYLM577LmiDEfKly/PtWvXuHr1apqPRx555Na5cXFxxMbG3vbaa4mIgHvvhbg4uJHF1M+5\nicREmDQJnn6ajlU78kCNBxi6ZKjRUuVKEq2JPPbrY1yLv0bUjSiWHF6SK43IqfFqhWAm/Pz8su06\nWqNGDQICAjh9+jSdO3emcOHCnDhxwk0SegCLRTbOeeop+Phjo6UxH927w5Ur8MYbEBPDyI4jWbB/\nAWFjw+g2rRsxsdru4gmsynprdta4dGMg9xqRU2OSBPvex9GjR1O8f//997NdxrFjx1wkjcl44w3x\noHn9dahQwWhpzMPmzXD16i0bS8CsWVQNqcq2s9vYe2EvgxYMSj9NtsYlKKV4dtGzHIs5xuK+i4lP\nijfFvgZmQc8QNK6nRAkxKn/0kdGSmIedO+GmLUrZwYOhZGBJAArlK8ToLqONki5XoJTipaUvsePs\nDhY+spAA/4Bcb0ROjVYIGvfw2mswZ45sD6mBr76SmVMqDwZ7muz7atzHsJXDzJnV1gdQStHghwZM\n3D6RoPxBJKkko0UyJVohaNxDsWKS42jECKMlMZ7Tp8W28sILt3kw2NNkT7p/EltPb2XS9kkGCuqb\nKKV4ffnrHLp0iGvx11hxdIU2IKeDVgga9/Hyy7BwoUT/5WbGjoW+fSXFRzoUzl+YOQ/N4c2Vb7Lj\n7A4PCufb2JeJVh1bRfNyskWpNiCnjzYqa9yHxQIVK0Lr1rJunhv3Xb5+XewFGzdmemrN0Jp80/Ub\n2v7UljrF61CkYBEiekXo9e0cYlVWhi4eyuZTm1nx+Ar8/Py0ATkT9AxB414KFYLz53Nv9PKUKaIQ\nq1XL0ul96vQhKH8QG05uYPGhxXppI4dYlZUhC4ew7cw2lj++nJBCIdqAnAX0DEHjXoJsOXsCA+GH\nDDab90WsVhg1SoLRskHdEnU5dfUUxQoV44d7c1mduYCEpARqf1ebc9fP0axsMxTaUJ9V9AxB414i\nIqBXLyhXDtavN1oaz7JwoaTzaN06W1+b3ns6D9Z8kIqWinz999duEs43uZFwgwdnPsjFGxe5EneF\n5UeW61lWNtAKQeNeLBZxP/3ySwlUS0gwWiLP8eWXYljPZgS7paCFeQ/P449H/+DnnT/z046f3COf\nj3Hp5iU6/tKRooWK0qRsE0AbkLOLVggGsWnTJjp27EixYsUoUaIEDz30EGfPnjVaLPfRtavMEiZM\nMFoSz/DAA/D33/DTTzlOBV4ysCR/9P2DN1a8wcojK10rn49x8spJ2kxuQ4tyLfipx0/M6D0jV6ex\nzilaIRhETEwMgwcP5vjx4xw/fpygoCD69+9vtFjuw88PvvgCPvhA8vn4OuvWSZK/pUudMqbXDK1J\n0zJN6TqtKy0nttT5jtIgfFY41cZUI9GayDtt3iGPXx5tQM4hWiHkEGe30OzSpQu9evUiMDCQQoUK\n8dxzz/HXX3+5UWITUL8+dOkCI0caLYl7Wb0a4uPltTObddi4Gn+VBGsCG09upNfMXi4Q0HdYfHAx\nv+//nbikOPZf3K/tBU7i1Qph0IJBtPupnVOZInNahqu30Fy3bh116tTJ0W/wKj78UNbWmzf3zZ3V\nlIJ33pFUFS7aaCPAX3Zxqla0GruidvH3yb9dIalXo5Ri1MZRDJg/gEalGwHaXuBrqLR4//330/xc\nKaXaTm6rGI5iOCp8Vni652VETsuoVKmSmjZt2q33r7/+uho8eHCOZNi5c6cqWrSo+vPPP9M9J6N6\n8DoqVFBKuk6lwnP2v5mWRYuUCgtTKjHRZUVG34xW4bPCVfTNaLVw/0JV/LPiamPkRpeV723EJcap\ngb8PVHd+f6c6Fn0sRf3kNsC1PrVeHYdgHzk5MzJwpozUW2iePn0629c/dOgQ3bp1Y8yYMbRq1Srb\n3/dKataEEyfgjjt8a2c1q1VmBx98AHnzuqxY+3o4QPfq3Zn8wGTaT2lPrdBalAoslauimR+b9xgL\nDyykQL4C/DPoH8oFlwPQacNdhFcvGdk3LXfGk8AVZTiSnS00jx8/TseOHXnvvffo27ev09f2GmbO\nhLvuEhfUAgWMlsZ1zJsnxvOePd16me7Vu1OtaDW2n92eq6KZVx5Zyew9s7kcd5mo61G8vPRlo0Xy\nObx6huA4cjKyDEfsW2hmxqlTp7j77rt5/vnnGZTbUjpYLOKF89BDYlPwhX0TkpLgvffEPpLNuIOc\nUD64PLujduOfx5/aJWqjlMr2jn3eQqI1kQ/WfsCP236kXsl6bDm9RdsL3IRXzxDMRHa30Pzxxx85\nevQow4cPvzV7CA4OdqOEJmT0aFky2rPHaEmcZ9o0yWbapYtHLmef2W57Zhu/7fuNAfMHEJ8U75Fr\ne5K+c/sS+lko3235jtVPrmbZ48t0fIEbMdOQwmYjScnw4cMZPny456UxGT5bD99+K3sErFkDebx0\nfBIbK7vEVakCZcp4PKvrtfhr9J3Xly2ntlDZUtknsqQqpZj27zSe+v0pEqwS3R4eFq5tBamwDUJd\n1o976R2o8RmGDJGtJadMMVqSnPPRR2IL2bnTkKyugfkDmffQPPLlyecTWVJPXD5B94jufL7hc5qU\n0SkoPIlWCBpjyZtXsqA+9xy0bOl9sQl79sC4cVC3rrx3QSBaTsibJy91Skgci38efywFLdxIuOFx\nOZzBqqyM3TyWRuMb0ap8K7Y+vZVFfRfpJSIPohWCxngaNoTQUNlExpv2TbBa4ZlnYPhw8TByUSBa\nTrHbFQ787wDXE67T8IeGbDm1xRBZssvaY2sp9UUphq0aRq3QWjzX9Dn88/rrFBQeRisEjTkIC5Pn\n8uW9JzZh0iRxnR08WJRAqv2SPY2986xkqcS0ntP4oP0HtP2pLeW+Ksc9P99jyjxIu87tontEd/r/\n3p9iAcW4EneF9SfWe/WSlzejFYLGHMyYIRlRb9yA48eNliZzzp2DYcNEebkwCM2VPFT7IeqXqs+p\nq6dYdXQVrSe15lp85i7RnuDh2Q9T6otSNJnQhDYV2rD3ub1UtlQGtL3ASLw6DkHjQ1gs8Mcf8PPP\n0KcP/PMPBAQYLVX6vPwy9O8Pd95ptCQZYl9qqVOiDjWK1aD6N9WpElIFP/wIKhDkUW8kq7Ky7PAy\nvtn8DcsPL7/lPfTPmX8okK8AEb0i9J7HBqMVgsZcPP44LFsGL71k3i03u3YVN9m77hIDuIHLRJmR\nupPddmYbHX/pyKWblwDoPas3yx9f7tagtsfmPcamk5s4e+0sVUKq8GLzF0lMSmTZkWUpZgOuDhLV\nZB+9ZKQxF35+8N13sGIFzJ1rtDS3ExUl6a1jY8WAbHIDeGqjbMPSDWlWthkAZYLKcPDSQUI/D6Xa\nmGq0ntT6lqJwBqUU/0X9xyfrP6HFxBbM2D2Dw9GHuZ5wnRrFavBUg6eYGT5Tew+ZED1D0JiP4GAJ\n7mrXDj79FIoX93iwV5okJIgnUblycPiwYS6mzuI4awguEEyDcQ3YFbWLw9GHKfVFKbpU60LU9Shu\nJt6kSIEiTO05lfLB5dOcRQycP5Bd53aRYE2gU5VOHLx0kOVHlpOQlEDJwJKM6jyKH/75gWWHZTYw\n4X7ZMU/PBsyJVggGsWfPHp544gmOHDmC1Wqldu3ajBw5ktbZ3JDdZ2nWDCpWhK1b5f2gQeLFYySv\nvAKBgbI15pAhogyMVlI5IHVnXDa4LLuidtG4TGN+efAXdp3bxUtLX+L0VcneW+XrKhTIV4B8efKR\naE1EKUWAfwA3E2+miHWIS4zjvbbvEXklkq2nt3Li8glm7J7BzN4ztW3AS9BLRgZRtmxZZs+ezcWL\nF4mOjqZPnz707t37/9s7u9goriuO/2xMAJtmbWwrJsTIdpzapCXGFQ2BtLFpCsJFpCUyyRIiVSpC\nfeMl9EtFIpb6QJW3pg9E7UNIhc0byCptXFzJCBUKovIHlaAOAcuJvXW3tdeqCBW2d/pwZ2G9nvXO\n7N3ZmbHPT1rtndl77/x9PJoz9/N4Lctf1NWp7zVr4L33vNVy+rRaI3HmDJSXez7FNJck7/jbWNHI\nG195g6anmgA14yf6oyiRdyI0lDfwxcwXPJh9wI7qHUwcm2DPs3se5bty+Arhr4apLK58dC7hBGQt\nQTAQh5AluiE0Q6EQtbW1FBQUMDc3R2FhIevXr3dRcQDp7IT2dnjrLTWjx4F9c8qNG3DsGJw/v2Sc\nQDJWD+xkJ1G2pownVz1JRXEFoB70H+3/iLVPrKWrvWvBWECut5QXlieWEYEWjRR25IhhtLQYRlub\nYUxlGS0pyzpqamqMbdu2GZFIxJicnDQ2bdpknDp1yhgdHTVCoZBRWlpq+enq6ppXTygUMoqKioyN\nGzcad+7cSXu9JRUxzSmzs4bx+uuG8eabhjE3l99rv/22YaxaZRjNzdnfY0uE5RyZzK+Q44hpwW4h\nDA/DpUt62x1o1HH06FGqqqooKytj3759DAwMUF1dTSwWY2pqyvITDofn1RGLxZieniYcDnPgwAEM\nix1flz0rVqiumkuX1Ermtrb87Hc0Pg7nzqmWSX+/72cUuY10/Sx9dBzCOuAiMAz8CUh3l4wAQ0A/\ncF3jegtJLFzSme2hUUdqCE07gXGsJRRz8uRJhoeHuXnzZlZ1LHlWr1ZjCuPj8PHHqgvJTW7dUpvt\nbdigjgM6o0gQnKDjEH6KcghfBv5sHlthAK1AM/CixvUW0tmpv6FYLupIwkkIzWTm5uaIx+MU+3l1\nrteEQuq7shJu34a7d925ztWrsHMndHSoGUUeb1onCPlCZ9rpa0CLmT4N9JHeKbizDDKxoZjXdSRh\nN4Rmb28vFRUVbN68mfv373P8+HEaGhqor6/PmZYlR2en6rb54AOV3rEDurrUwztXdHfD4cNqC422\nNnXO6+mugpAndFoITwETZnrCPLbCAHqBG8ARjev5GqchNGOxGAcPHqS0tJSGhgai0Sjd3d0uKlwC\nJJx3WZmKn3DmDOzdC7W1sHu33rjC5CQ0NanWwHPPwfbtudMtCAEhUwvhIlBlcf7nKceLjXa/DESA\nSrO+28Blq4zJISJbW1tpbW3NIM877t27N+/4xIkTjsq3t7fLugNdXn1VBaa5fh1GRqClBa5cgZIS\n+3U8eADvv6/WOaxcCQ8fqi4jPyyEE4QU+vr66Ovrc63+TA5h1yK/TaCcxT+B9cC/0uSLmN9R4Bxq\nHCGjQxAEW5SXq+/nn4eaGqivVyucCwpUi6Kra2Hfv2HAoUNqR9XRUdi1Cy5fVjuYRiIygCz4ltQX\n5Y6OjpzWrzOG0A18H/il+X3eIk8xsAL4L1AC7AZy+xcIy5vEuEJiG4nBQfWAj0bV7/X1sH8/DA3B\n2JiKtxCPq5bBw4cqz+rV0Ni4sC5BWGbojCGcRLUghoFvmccATwMXzHQVqjUwAFwDfo+aoioIuSE1\nUllTk3rDT6Q//BC2bFHOYGwMpqbglVdUdxPMbw34IOqZIHiJTgthEvi2xflxYK+Zvgts0bgGBQUF\nxONxCguDvYZOh3g87up+9UsOqzf9CxeUQ9i6Vc0gAmkNCEIKvn/KlpSUMD097bUMT4nFYpQ4GShd\n7li96aeuN5HWgCAswPcOobm5mZ6eHmZmZryW4gkzMzP09PTQ3NzstZRgIw5AEDLip34Iw2ofn9nZ\nWc6ePfsobsByo7CwkLq6OsLhMEVFEr5CEITHmF3JOXuO+94hCIIgCNbk2iH4vssoCLi5UCQfiH5v\nEf3eEnT9uUQcQg4I+g0l+r1F9HtL0PXnEnEIgiAIAiAOQRAEQTDx06DyANDktQhBEIQAMYjm4l9B\nEARBEARBEARBEARB8Jg9qKA4nwA/SZPnV+bvg6jYy07Kuo2O/hFgCOgHrrsncVEy6W8ErgL/A95x\nWDYf6OgfwVv7Z9J+CHXPDAF/AV5wUDYf6Ogfwf/3/ndR+vuBv6F2bbZbNh/o6B/Be/svYAVwB6gB\nVqIGjjel5PkO8AczvQ34q4OybqOjH+AesM5diYtiR38lsBX4BfMfqEGxfzr94K397WjfDoTM9B6C\nd++n0w/BuPeTd4zcbOa3W9ZtdPRDlvZ3e9rpiyiRI8AMcBbl1ZJ5DThtpq8Bpag4CnbKuk22+pPj\nS3s5k8uO/igq3nXq7oFBsX86/Qm8sr8d7VeBxFa+14BnHJR1Gx39Cfx+799PSq8F/u2grNvo6E/g\n2P5uO4QNwGdJx5+b5+zkedpGWbfR0Q8qznQv6oF1xCWNi2FHvxtlc4WuBi/t71T7YR63NINo+2T9\nEJx7/3vALeCPwFGHZd1ERz9kaX+3t8+0u1udn9ZDJKOr/xuogEGVwEVUf6BlPGmX0Nkt0A87Depq\neBkV09sL+zvRvhP4AUqv07JuoaMfvLU92Nd/3vx8E/gdakzKD2Srv8E8n5X93W4hjAHVScfVKE+3\nWJ5nzDx2yrpNtvrHzPS4+R0FzqGagflEx4ZBsf9iRMxvL+xvV/sLwG9QXY9TDsu6iY5+8Nb24NyG\nl1EvyOvMfEGxf4KE/nLz2Gv7W1IEfIoaGHmCzIOyL/F4YMpOWbfR0V8MfMlMl6BmYex2UasVTmz4\nLvMHZYNi/wTvMl+/1/a3o30jqp/4pSzKuo2Ofq9tD/b0P8vj1v3XzPx2y7qNjn4/2D8tbcA/UDfO\nz8xzPzQ/CX5t/j6I+sMWK5tvstVfh/onDgB/x7/6q1B9ldOoN7xR1ABVurL5Jlv9frB/Ju2/Bf6D\nmhqYOj0wCLZPp98PtofM+n+M0tePesP+eoay+SZb/X6xvyAIgiAIgiAIgiAIgiAIgiAIgiAIgiAI\ngiAIgiAIgiAIgiAIgiAIgrDU+T++vb1t8Hb6hAAAAABJRU5ErkJggg==\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0x11ae2850>" | |
] | |
} | |
], | |
"prompt_number": 213 | |
} | |
], | |
"metadata": {} | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment