Created
May 14, 2018 18:18
-
-
Save sencagri/894fe544687993109d412a3fabec1d23 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from numpy import genfromtxt | |
import numpy as np | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
from sklearn import datasets, svm | |
from sklearn.ensemble import GradientBoostingClassifier | |
from sklearn import tree | |
from sklearn.ensemble import RandomForestClassifier | |
from sklearn.metrics import confusion_matrix | |
from sklearn.metrics import accuracy_score | |
def main(): | |
features_train = genfromtxt("Abalone_train.csv", delimiter=',' ,usecols = (0,1,2,3,4,5,6,7), skip_header=1) | |
labels_train = genfromtxt("Abalone_train.csv", delimiter=',' ,usecols = (8), skip_header=1) | |
features_test = genfromtxt("Abalone_test.csv", delimiter=',' ,usecols = (0,1,2,3,4,5,6,7), skip_header=1) | |
labels_test = genfromtxt("Abalone_test.csv", delimiter=',' ,usecols = (8), skip_header=1) | |
## SUPPORT VECTOR MACHINE | |
print("Training SVM...") | |
clfSVM = svm.SVC(kernel='rbf', gamma=0.5, C=100) | |
clfSVM.fit(features_train, labels_train) | |
print("Training SVM completed. Now testing.") | |
svmPredict = clfSVM.predict(features_test) | |
svmConfusion = confusion_matrix(labels_test, svmPredict) | |
svmAccuracy = accuracy_score(labels_test, svmPredict) | |
print("Accuracy : " + str(svmAccuracy)) | |
print(svmConfusion) | |
plt.matshow(svmConfusion) | |
plt.title("SVM Confusion Matrix") | |
plt.show() | |
## ENSEMBLE LEARNING | |
print("Training ensemble learning...") | |
clfEnsemble = GradientBoostingClassifier() | |
clfEnsemble.fit(features_train, labels_train) | |
print("Training ensemble completed. Now testing.") | |
ensemblePredict = clfEnsemble.predict(features_test) | |
ensembleConfusion = confusion_matrix(labels_test, ensemblePredict) | |
ensembleAccuracy = accuracy_score(labels_test, ensemblePredict) | |
print("Accuracy : " + str(ensembleAccuracy)) | |
print(ensembleConfusion) | |
plt.matshow(ensembleConfusion) | |
plt.title("Ensemble Confusion Matrix") | |
plt.show() | |
## DECISION TREE CLASSIFIER | |
print("Training tree classifier...") | |
clfTree = tree.DecisionTreeClassifier() | |
clfTree.fit(features_train, labels_train) | |
print("Training tree classifier completed. Now testing") | |
treePredict = clfTree.predict(features_test) | |
treeConfusion = confusion_matrix(labels_test, treePredict) | |
treeAccuracy = accuracy_score(labels_test, treePredict) | |
print("Accuracy : " + str(treeAccuracy)) | |
print(treeConfusion) | |
plt.matshow(treeConfusion) | |
plt.title("Tree Confusion Matrix") | |
plt.show() | |
## RANDOM FOREST CLASSIFIER | |
print("Training random forest classifier") | |
clfRandom = RandomForestClassifier() | |
clfRandom.fit(features_train, labels_train) | |
print("Training random forest classifier completed. Now testing") | |
randomPredict = clfRandom.predict(features_test) | |
randomConfusion = confusion_matrix(labels_test, randomPredict) | |
randomAccuracy = accuracy_score(labels_test, randomPredict) | |
print("Accuracy : " + str(randomAccuracy)) | |
print(randomConfusion) | |
plt.matshow(randomConfusion) | |
plt.title("Random Forest Confusion Matrix") | |
plt.show() | |
if __name__ == "__main__": | |
main() | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment