Skip to content

Instantly share code, notes, and snippets.

@sengstacken
Created June 16, 2020 14:27
Show Gist options
  • Save sengstacken/e0033f220e0a45531a17c0a978973c8d to your computer and use it in GitHub Desktop.
Save sengstacken/e0033f220e0a45531a17c0a978973c8d to your computer and use it in GitHub Desktop.
confusion matrix python
import seaborn as sns
from sklearn.metrics import confusion_matrix
from sklearn.utils.multiclass import unique_labels
def plot_confusion_matrix(y_true, y_pred, classes,
normalize=False,
title=None,
cmap=None):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
if not title:
if normalize:
title = 'Normalized confusion matrix'
plt.cm.Greens
else:
title = 'Confusion matrix, without normalization'
# Compute confusion matrix
cm = confusion_matrix(y_true, y_pred)
# Only use the labels that appear in the data
classes = classes[unique_labels(y_true, y_pred)]
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
fig, ax = plt.subplots()
im = ax.imshow(cm, interpolation='nearest', cmap=cmap)
ax.figure.colorbar(im, ax=ax)
# We want to show all ticks...
ax.set(xticks=np.arange(cm.shape[1]),
yticks=np.arange(cm.shape[0]),
# ... and label them with the respective list entries
xticklabels=classes, yticklabels=classes,
title=title,
ylabel='Actual',
xlabel='Predicted')
# Rotate the tick labels and set their alignment.
plt.setp(ax.get_xticklabels(), rotation=45, ha="right",
rotation_mode="anchor")
# Loop over data dimensions and create text annotations.
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i in range(cm.shape[0]):
for j in range(cm.shape[1]):
ax.text(j, i, format(cm[i, j], fmt),
ha="center", va="center",
color="white" if cm[i, j] > thresh else "black")
fig.tight_layout()
return ax
np.set_printoptions(precision=2)
%matplotlib inline
sns.set_context("paper", font_scale=1.4)
y_test = test_y
y_pred = predictions
class_names = np.array(['Unexplained', 'Explained', 'Probable'])
# Plot non-normalized confusion matrix
plot_confusion_matrix(y_test, y_pred, classes=class_names,
title='Confusion matrix',
cmap=plt.cm.Blues)
plt.grid(False)
plt.show()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment