Created
June 16, 2020 14:27
-
-
Save sengstacken/e0033f220e0a45531a17c0a978973c8d to your computer and use it in GitHub Desktop.
confusion matrix python
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import seaborn as sns | |
from sklearn.metrics import confusion_matrix | |
from sklearn.utils.multiclass import unique_labels | |
def plot_confusion_matrix(y_true, y_pred, classes, | |
normalize=False, | |
title=None, | |
cmap=None): | |
""" | |
This function prints and plots the confusion matrix. | |
Normalization can be applied by setting `normalize=True`. | |
""" | |
if not title: | |
if normalize: | |
title = 'Normalized confusion matrix' | |
plt.cm.Greens | |
else: | |
title = 'Confusion matrix, without normalization' | |
# Compute confusion matrix | |
cm = confusion_matrix(y_true, y_pred) | |
# Only use the labels that appear in the data | |
classes = classes[unique_labels(y_true, y_pred)] | |
if normalize: | |
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] | |
fig, ax = plt.subplots() | |
im = ax.imshow(cm, interpolation='nearest', cmap=cmap) | |
ax.figure.colorbar(im, ax=ax) | |
# We want to show all ticks... | |
ax.set(xticks=np.arange(cm.shape[1]), | |
yticks=np.arange(cm.shape[0]), | |
# ... and label them with the respective list entries | |
xticklabels=classes, yticklabels=classes, | |
title=title, | |
ylabel='Actual', | |
xlabel='Predicted') | |
# Rotate the tick labels and set their alignment. | |
plt.setp(ax.get_xticklabels(), rotation=45, ha="right", | |
rotation_mode="anchor") | |
# Loop over data dimensions and create text annotations. | |
fmt = '.2f' if normalize else 'd' | |
thresh = cm.max() / 2. | |
for i in range(cm.shape[0]): | |
for j in range(cm.shape[1]): | |
ax.text(j, i, format(cm[i, j], fmt), | |
ha="center", va="center", | |
color="white" if cm[i, j] > thresh else "black") | |
fig.tight_layout() | |
return ax | |
np.set_printoptions(precision=2) | |
%matplotlib inline | |
sns.set_context("paper", font_scale=1.4) | |
y_test = test_y | |
y_pred = predictions | |
class_names = np.array(['Unexplained', 'Explained', 'Probable']) | |
# Plot non-normalized confusion matrix | |
plot_confusion_matrix(y_test, y_pred, classes=class_names, | |
title='Confusion matrix', | |
cmap=plt.cm.Blues) | |
plt.grid(False) | |
plt.show() | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment