Created
September 14, 2018 11:02
-
-
Save sergei-mironov/538add838a4aeb9474f05d776ff7df4a to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from os import environ | |
from os.path import isfile, join | |
from typing import List,Tuple | |
from time import strftime, perf_counter | |
from tensorflow.gfile import FastGFile | |
from tensorflow.summary import FileWriter | |
from tensorflow import Graph,GraphDef | |
from tensorflow.python.ops import variables | |
from tvm.contrib import graph_runtime | |
from nnvm.frontend import from_tensorflow | |
from nnvm.compiler import build | |
import tensorflow as tf | |
import numpy as np | |
import nnvm | |
import tvm | |
MODEL_PB=join(environ['CWD'], "data/freeze.pb") | |
MODEL_INPUTS='Rcnn_ctcV3/Inputs' | |
MODEL_OUTPUTS='Rcnn_ctcV3/conv2d_116/BiasAdd' | |
DEF_LOG_DIR='./_logs' | |
def get_log_dir(tag:str=""): | |
return join(DEF_LOG_DIR,((str(tag)+'-') if len(tag)>0 else '')+strftime("%Y%m%d-%H:%M:%S")) | |
def fropen()->Tuple[Graph,GraphDef]: | |
with tf.Session(graph=tf.Graph()) as sess: | |
with FastGFile(MODEL_PB, 'rb') as f: | |
graph_def = tf.GraphDef() | |
graph_def.ParseFromString(f.read()) | |
tf.import_graph_def(graph_def, name="") | |
graphdef=sess.graph.as_graph_def(add_shapes=True) | |
return sess.graph, graphdef | |
def totb(g:Graph): | |
""" Export to TensorBoard """ | |
writer=FileWriter(get_log_dir("freezepb")) | |
writer.add_graph(g) | |
def dump(graphdef:GraphDef, suffix:str='restored')->None: | |
""" Export to file """ | |
with open('graphdef%s' %('_'+suffix if len(suffix)>0 else '',)+'.txt', "w") as f: | |
f.write(str(graphdef)) | |
def run(): | |
assert isfile(MODEL_PB) | |
g,gd=fropen() | |
print(g) | |
# totb(g) | |
sym,params=nnvm.frontend.from_tensorflow(gd) | |
print(sym) | |
class Result: | |
def __init__(s): | |
s.perfs:float=None | |
s.last_data:np.array=None | |
pass | |
def common_init(init_method, shape, dtype): | |
if init_method=='zeros': | |
return np.zeros(shape=shape, dtype=dtype) | |
elif init_method=='std': | |
return np.random.uniform(low=-50, high=51, size=shape).astype(dtype=dtype) | |
else: | |
raise ValueError("invalid 'init' argument") | |
def tf_run(init_method='std', nwarmup:int=10, nloops:int=100)->Result: | |
""" Run the model on tensorflow with zero inputs """ | |
with tf.Session(graph=tf.Graph()) as sess: | |
with FastGFile(MODEL_PB, 'rb') as f: | |
graph_def = tf.GraphDef() | |
graph_def.ParseFromString(f.read()) | |
tf.import_graph_def(graph_def, name="") | |
sess.run(variables.global_variables_initializer()) | |
g=tf.get_default_graph() | |
i=g.get_tensor_by_name(MODEL_INPUTS+':0') | |
print("Input node:",type(i), i.name, i.dtype, i) | |
o=g.get_tensor_by_name(MODEL_OUTPUTS+':0') | |
print("Output node:",type(o), o.name, o.dtype, o) | |
perfs:List[float]=[] | |
for it in range(nwarmup+nloops): | |
i_dict={i: common_init(init_method, i.shape, i.dtype.as_numpy_dtype())} | |
b=perf_counter() | |
o_data=sess.run(o, i_dict) | |
e=perf_counter() | |
print('tf', e-b) | |
if it>=nwarmup: | |
perfs.append(e-b) | |
r=Result() | |
r.perfs=perfs | |
r.last_data=o_data | |
return r | |
def tvm_run(init_method='std', nwarmup:int=10, nloops:int=100)->Result: | |
g,gd=fropen() | |
sym,params=nnvm.frontend.from_tensorflow(gd) | |
i=g.get_tensor_by_name(MODEL_INPUTS+':0') | |
o=g.get_tensor_by_name(MODEL_OUTPUTS+':0') | |
i_shape_dict={MODEL_INPUTS+':0': i.shape.as_list()} | |
i_dtype_dict={MODEL_INPUTS+':0': i.dtype.as_numpy_dtype()} | |
graph,lib,params=nnvm.compiler.build(graph=sym, target='llvm', shape=i_shape_dict, dtype=i_dtype_dict, params=params) | |
m=graph_runtime.create(graph, lib, ctx=tvm.cpu(0)) | |
print('compiled') | |
perfs:List[float]=[] | |
for it in range(nwarmup+nloops): | |
i_data=common_init(init_method, shape=i.shape.as_list(), dtype=i.dtype.as_numpy_dtype()) | |
m.set_input(MODEL_INPUTS, tvm.nd.array(i_data)) | |
m.set_input(**params) | |
b=perf_counter() | |
m.run() | |
e=perf_counter() | |
o_data = m.get_output(0, tvm.nd.empty(o.shape.as_list(), o.dtype.name)) | |
print('tvm', e-b) | |
if it>=nwarmup: | |
perfs.append(e-b) | |
r=Result() | |
r.perfs=perfs | |
r.last_data=o_data | |
return r | |
RUN_ARGS={'init_method':'std', 'nwarmup':3, 'nloops':50} | |
def meanerr(): | |
print('Running TF') | |
rtf=tf_run(**RUN_ARGS) | |
print('Running TVM') | |
rtvm=tvm_run(**RUN_ARGS) | |
print('tf running time :', np.mean(rtf.perfs),'+-', np.std(rtf.perfs)) | |
print('tvm running time :', np.mean(rtvm.perfs),'+-', np.std(rtvm.perfs)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment