Created
April 28, 2020 14:55
-
-
Save sergei-mironov/724e0598bbc56deb3ae6507a8527f6f4 to your computer and use it in GitHub Desktop.
codebraid_progress_bar.html
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
<!DOCTYPE html> | |
<html xmlns="http://www.w3.org/1999/xhtml" lang xml:lang> | |
<head> | |
<meta charset="utf-8" /> | |
<meta name="generator" content="pandoc" /> | |
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" /> | |
<title>BERT Pretraining</title> | |
<style> | |
code{white-space: pre-wrap;} | |
span.smallcaps{font-variant: small-caps;} | |
span.underline{text-decoration: underline;} | |
div.column{display: inline-block; vertical-align: top; width: 50%;} | |
</style> | |
<style> | |
a.sourceLine { display: inline-block; line-height: 1.25; } | |
a.sourceLine { pointer-events: none; color: inherit; text-decoration: inherit; } | |
a.sourceLine:empty { height: 1.2em; } | |
.sourceCode { overflow: visible; } | |
code.sourceCode { white-space: pre; position: relative; } | |
div.sourceCode { margin: 1em 0; } | |
pre.sourceCode { margin: 0; } | |
@media screen { | |
div.sourceCode { overflow: auto; } | |
} | |
@media print { | |
code.sourceCode { white-space: pre-wrap; } | |
a.sourceLine { text-indent: -1em; padding-left: 1em; } | |
} | |
pre.numberSource a.sourceLine | |
{ position: relative; left: -4em; } | |
pre.numberSource a.sourceLine::before | |
{ content: attr(title); | |
position: relative; left: -1em; text-align: right; vertical-align: baseline; | |
border: none; pointer-events: all; display: inline-block; | |
-webkit-touch-callout: none; -webkit-user-select: none; | |
-khtml-user-select: none; -moz-user-select: none; | |
-ms-user-select: none; user-select: none; | |
padding: 0 4px; width: 4em; | |
color: #aaaaaa; | |
} | |
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; } | |
div.sourceCode | |
{ } | |
@media screen { | |
a.sourceLine::before { text-decoration: underline; } | |
} | |
code span.al { color: #ff0000; font-weight: bold; } /* Alert */ | |
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */ | |
code span.at { color: #7d9029; } /* Attribute */ | |
code span.bn { color: #40a070; } /* BaseN */ | |
code span.bu { } /* BuiltIn */ | |
code span.cf { color: #007020; font-weight: bold; } /* ControlFlow */ | |
code span.ch { color: #4070a0; } /* Char */ | |
code span.cn { color: #880000; } /* Constant */ | |
code span.co { color: #60a0b0; font-style: italic; } /* Comment */ | |
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */ | |
code span.do { color: #ba2121; font-style: italic; } /* Documentation */ | |
code span.dt { color: #902000; } /* DataType */ | |
code span.dv { color: #40a070; } /* DecVal */ | |
code span.er { color: #ff0000; font-weight: bold; } /* Error */ | |
code span.ex { } /* Extension */ | |
code span.fl { color: #40a070; } /* Float */ | |
code span.fu { color: #06287e; } /* Function */ | |
code span.im { } /* Import */ | |
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */ | |
code span.kw { color: #007020; font-weight: bold; } /* Keyword */ | |
code span.op { color: #666666; } /* Operator */ | |
code span.ot { color: #007020; } /* Other */ | |
code span.pp { color: #bc7a00; } /* Preprocessor */ | |
code span.sc { color: #4070a0; } /* SpecialChar */ | |
code span.ss { color: #bb6688; } /* SpecialString */ | |
code span.st { color: #4070a0; } /* String */ | |
code span.va { color: #19177c; } /* Variable */ | |
code span.vs { color: #4070a0; } /* VerbatimString */ | |
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */ | |
</style> | |
<!--[if lt IE 9]> | |
<script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv-printshiv.min.js"></script> | |
<![endif]--> | |
</head> | |
<body> | |
<h1 id="example-showing-an-snippet-which-prints-a-progress-bar">Example showing an snippet which prints a progress-bar</h1> | |
<div class="sourceCode" id="cb1" data-startFrom="1"><pre class="sourceCode numberSource python numberLines"><code class="sourceCode python"><a class="sourceLine" id="cb1-1" title="1"><span class="im">from</span> stagedml.stages.<span class="bu">all</span> <span class="im">import</span> <span class="op">*</span></a> | |
<a class="sourceLine" id="cb1-2" title="2">rref<span class="op">=</span>realize(instantiate(all_convnn_mnist), force_rebuild<span class="op">=</span><span class="va">True</span>)</a></code></pre></div> | |
<pre class="stdout"><code>x_train shape: (60000, 28, 28, 1) | |
60000 train samples | |
10000 test samples | |
Train on 48000 samples, validate on 12000 samples | |
Epoch 1/6 | |
32/48000 [..............................] - ETA: 25:23 - loss: 2.3240 - accuracy: 0.0312 | |
480/48000 [..............................] - ETA: 1:45 - loss: 1.8179 - accuracy: 0.4021 | |
896/48000 [..............................] - ETA: 58s - loss: 1.5192 - accuracy: 0.4944 | |
1312/48000 [..............................] - ETA: 41s - loss: 1.2903 - accuracy: 0.5716 | |
1760/48000 [>.............................] - ETA: 32s - loss: 1.1251 - accuracy: 0.6284 | |
2240/48000 [>.............................] - ETA: 25s - loss: 1.0159 - accuracy: 0.6607 | |
2656/48000 [>.............................] - ETA: 22s - loss: 0.9500 - accuracy: 0.6849 | |
3072/48000 [>.............................] - ETA: 20s - loss: 0.8908 - accuracy: 0.7067 | |
3424/48000 [=>............................] - ETA: 18s - loss: 0.8404 - accuracy: 0.7223 | |
3808/48000 [=>............................] - ETA: 17s - loss: 0.7976 - accuracy: 0.7363 | |
4192/48000 [=>............................] - ETA: 15s - loss: 0.7625 - accuracy: 0.7488 | |
4704/48000 [=>............................] - ETA: 14s - loss: 0.7222 - accuracy: 0.7634 | |
5184/48000 [==>...........................] - ETA: 13s - loss: 0.6870 - accuracy: 0.7758 | |
5632/48000 [==>...........................] - ETA: 12s - loss: 0.6583 - accuracy: 0.7862 | |
5984/48000 [==>...........................] - ETA: 12s - loss: 0.6354 - accuracy: 0.7936 | |
6336/48000 [==>...........................] - ETA: 11s - loss: 0.6205 - accuracy: 0.7986 | |
6784/48000 [===>..........................] - ETA: 11s - loss: 0.6092 - accuracy: 0.8038 | |
7360/48000 [===>..........................] - ETA: 10s - loss: 0.5870 - accuracy: 0.8110 | |
7904/48000 [===>..........................] - ETA: 9s - loss: 0.5644 - accuracy: 0.8191 | |
8448/48000 [====>.........................] - ETA: 9s - loss: 0.5419 - accuracy: 0.8268 | |
8960/48000 [====>.........................] - ETA: 8s - loss: 0.5253 - accuracy: 0.8313 | |
9536/48000 [====>.........................] - ETA: 8s - loss: 0.5091 - accuracy: 0.8361 | |
10112/48000 [=====>........................] - ETA: 8s - loss: 0.4922 - accuracy: 0.8420 | |
10688/48000 [=====>........................] - ETA: 7s - loss: 0.4748 - accuracy: 0.8479 | |
11296/48000 [======>.......................] - ETA: 7s - loss: 0.4601 - accuracy: 0.8530 | |
11872/48000 [======>.......................] - ETA: 7s - loss: 0.4453 - accuracy: 0.8581 | |
12448/48000 [======>.......................] - ETA: 6s - loss: 0.4338 - accuracy: 0.8622 | |
13024/48000 [=======>......................] - ETA: 6s - loss: 0.4255 - accuracy: 0.8657 | |
13600/48000 [=======>......................] - ETA: 6s - loss: 0.4158 - accuracy: 0.8686 | |
14176/48000 [=======>......................] - ETA: 5s - loss: 0.4060 - accuracy: 0.8713 | |
14720/48000 [========>.....................] - ETA: 5s - loss: 0.3985 - accuracy: 0.8739 | |
15296/48000 [========>.....................] - ETA: 5s - loss: 0.3922 - accuracy: 0.8760 | |
15808/48000 [========>.....................] - ETA: 5s - loss: 0.3847 - accuracy: 0.8784 | |
16352/48000 [=========>....................] - ETA: 5s - loss: 0.3767 - accuracy: 0.8811 | |
16896/48000 [=========>....................] - ETA: 5s - loss: 0.3689 - accuracy: 0.8835 | |
17440/48000 [=========>....................] - ETA: 4s - loss: 0.3630 - accuracy: 0.8854 | |
18016/48000 [==========>...................] - ETA: 4s - loss: 0.3587 - accuracy: 0.8871 | |
18624/48000 [==========>...................] - ETA: 4s - loss: 0.3526 - accuracy: 0.8892 | |
19168/48000 [==========>...................] - ETA: 4s - loss: 0.3465 - accuracy: 0.8910 | |
19744/48000 [===========>..................] - ETA: 4s - loss: 0.3407 - accuracy: 0.8926 | |
20288/48000 [===========>..................] - ETA: 4s - loss: 0.3368 - accuracy: 0.8938 | |
20704/48000 [===========>..................] - ETA: 4s - loss: 0.3338 - accuracy: 0.8950 | |
21120/48000 [============>.................] - ETA: 4s - loss: 0.3305 - accuracy: 0.8962 | |
21536/48000 [============>.................] - ETA: 3s - loss: 0.3276 - accuracy: 0.8972 | |
22016/48000 [============>.................] - ETA: 3s - loss: 0.3227 - accuracy: 0.8988 | |
22496/48000 [=============>................] - ETA: 3s - loss: 0.3202 - accuracy: 0.8997 | |
22976/48000 [=============>................] - ETA: 3s - loss: 0.3177 - accuracy: 0.9006 | |
23520/48000 [=============>................] - ETA: 3s - loss: 0.3136 - accuracy: 0.9019 | |
23936/48000 [=============>................] - ETA: 3s - loss: 0.3111 - accuracy: 0.9027 | |
24384/48000 [==============>...............] - ETA: 3s - loss: 0.3080 - accuracy: 0.9037 | |
24992/48000 [==============>...............] - ETA: 3s - loss: 0.3039 - accuracy: 0.9049 | |
25536/48000 [==============>...............] - ETA: 3s - loss: 0.2999 - accuracy: 0.9062 | |
26080/48000 [===============>..............] - ETA: 3s - loss: 0.2974 - accuracy: 0.9070 | |
26592/48000 [===============>..............] - ETA: 3s - loss: 0.2943 - accuracy: 0.9081 | |
27136/48000 [===============>..............] - ETA: 2s - loss: 0.2919 - accuracy: 0.9089 | |
27616/48000 [================>.............] - ETA: 2s - loss: 0.2890 - accuracy: 0.9100 | |
28000/48000 [================>.............] - ETA: 2s - loss: 0.2875 - accuracy: 0.9106 | |
28416/48000 [================>.............] - ETA: 2s - loss: 0.2849 - accuracy: 0.9115 | |
28928/48000 [=================>............] - ETA: 2s - loss: 0.2823 - accuracy: 0.9124 | |
29472/48000 [=================>............] - ETA: 2s - loss: 0.2792 - accuracy: 0.9134 | |
29888/48000 [=================>............] - ETA: 2s - loss: 0.2772 - accuracy: 0.9140 | |
30400/48000 [==================>...........] - ETA: 2s - loss: 0.2749 - accuracy: 0.9147 | |
30912/48000 [==================>...........] - ETA: 2s - loss: 0.2735 - accuracy: 0.9150 | |
31360/48000 [==================>...........] - ETA: 2s - loss: 0.2708 - accuracy: 0.9158 | |
31904/48000 [==================>...........] - ETA: 2s - loss: 0.2684 - accuracy: 0.9166 | |
32480/48000 [===================>..........] - ETA: 2s - loss: 0.2655 - accuracy: 0.9175 | |
33024/48000 [===================>..........] - ETA: 2s - loss: 0.2627 - accuracy: 0.9183 | |
33568/48000 [===================>..........] - ETA: 1s - loss: 0.2603 - accuracy: 0.9192 | |
34112/48000 [====================>.........] - ETA: 1s - loss: 0.2587 - accuracy: 0.9197 | |
34656/48000 [====================>.........] - ETA: 1s - loss: 0.2570 - accuracy: 0.9201 | |
35168/48000 [====================>.........] - ETA: 1s - loss: 0.2549 - accuracy: 0.9209 | |
35744/48000 [=====================>........] - ETA: 1s - loss: 0.2521 - accuracy: 0.9218 | |
36320/48000 [=====================>........] - ETA: 1s - loss: 0.2499 - accuracy: 0.9225 | |
36832/48000 [======================>.......] - ETA: 1s - loss: 0.2483 - accuracy: 0.9230 | |
37376/48000 [======================>.......] - ETA: 1s - loss: 0.2469 - accuracy: 0.9235 | |
37888/48000 [======================>.......] - ETA: 1s - loss: 0.2448 - accuracy: 0.9242 | |
38368/48000 [======================>.......] - ETA: 1s - loss: 0.2434 - accuracy: 0.9245 | |
38912/48000 [=======================>......] - ETA: 1s - loss: 0.2413 - accuracy: 0.9252 | |
39424/48000 [=======================>......] - ETA: 1s - loss: 0.2398 - accuracy: 0.9258 | |
39872/48000 [=======================>......] - ETA: 1s - loss: 0.2381 - accuracy: 0.9262 | |
40416/48000 [========================>.....] - ETA: 0s - loss: 0.2369 - accuracy: 0.9267 | |
40992/48000 [========================>.....] - ETA: 0s - loss: 0.2348 - accuracy: 0.9272 | |
41536/48000 [========================>.....] - ETA: 0s - loss: 0.2334 - accuracy: 0.9276 | |
41920/48000 [=========================>....] - ETA: 0s - loss: 0.2324 - accuracy: 0.9280 | |
42496/48000 [=========================>....] - ETA: 0s - loss: 0.2310 - accuracy: 0.9284 | |
43040/48000 [=========================>....] - ETA: 0s - loss: 0.2295 - accuracy: 0.9288 | |
43584/48000 [==========================>...] - ETA: 0s - loss: 0.2280 - accuracy: 0.9294 | |
44160/48000 [==========================>...] - ETA: 0s - loss: 0.2261 - accuracy: 0.9300 | |
44704/48000 [==========================>...] - ETA: 0s - loss: 0.2248 - accuracy: 0.9303 | |
45216/48000 [===========================>..] - ETA: 0s - loss: 0.2233 - accuracy: 0.9309 | |
45728/48000 [===========================>..] - ETA: 0s - loss: 0.2224 - accuracy: 0.9312 | |
46240/48000 [===========================>..] - ETA: 0s - loss: 0.2211 - accuracy: 0.9317 | |
46688/48000 [============================>.] - ETA: 0s - loss: 0.2200 - accuracy: 0.9320 | |
47232/48000 [============================>.] - ETA: 0s - loss: 0.2190 - accuracy: 0.9323 | |
47808/48000 [============================>.] - ETA: 0s - loss: 0.2176 - accuracy: 0.9327 | |
Epoch 00001: val_accuracy improved from -inf to 0.97925, saving model to /workspace/_pylightnix/tmp/200428-17:54:28:846168+0300_out_af307179_s6kq1b3l/checkpoint.ckpt | |
48000/48000 [==============================] - 7s 138us/sample - loss: 0.2175 - accuracy: 0.9329 - val_loss: 0.0693 - val_accuracy: 0.9793 | |
Epoch 2/6 | |
32/48000 [..............................] - ETA: 7s - loss: 0.1325 - accuracy: 0.9375 | |
544/48000 [..............................] - ETA: 4s - loss: 0.0845 - accuracy: 0.9798 | |
1024/48000 [..............................] - ETA: 4s - loss: 0.0952 - accuracy: 0.9746 | |
1536/48000 [..............................] - ETA: 4s - loss: 0.0883 - accuracy: 0.9759 | |
2048/48000 [>.............................] - ETA: 4s - loss: 0.0904 - accuracy: 0.9756 | |
2528/48000 [>.............................] - ETA: 4s - loss: 0.0885 - accuracy: 0.9747 | |
2912/48000 [>.............................] - ETA: 4s - loss: 0.0907 - accuracy: 0.9722 | |
3392/48000 [=>............................] - ETA: 4s - loss: 0.0884 - accuracy: 0.9723 | |
3872/48000 [=>............................] - ETA: 4s - loss: 0.0930 - accuracy: 0.9726 | |
4288/48000 [=>............................] - ETA: 4s - loss: 0.0942 - accuracy: 0.9727 | |
4768/48000 [=>............................] - ETA: 4s - loss: 0.0930 - accuracy: 0.9734 | |
5280/48000 [==>...........................] - ETA: 4s - loss: 0.0910 - accuracy: 0.9741 | |
5792/48000 [==>...........................] - ETA: 4s - loss: 0.0930 - accuracy: 0.9739 | |
6272/48000 [==>...........................] - ETA: 4s - loss: 0.0953 - accuracy: 0.9727 | |
6784/48000 [===>..........................] - ETA: 4s - loss: 0.0945 - accuracy: 0.9724 | |
7296/48000 [===>..........................] - ETA: 4s - loss: 0.0932 - accuracy: 0.9729 | |
7808/48000 [===>..........................] - ETA: 4s - loss: 0.0936 - accuracy: 0.9727 | |
8320/48000 [====>.........................] - ETA: 4s - loss: 0.0918 - accuracy: 0.9730 | |
8800/48000 [====>.........................] - ETA: 4s - loss: 0.0923 - accuracy: 0.9733 | |
9312/48000 [====>.........................] - ETA: 4s - loss: 0.0915 - accuracy: 0.9735 | |
9792/48000 [=====>........................] - ETA: 4s - loss: 0.0921 - accuracy: 0.9737 | |
10272/48000 [=====>........................] - ETA: 4s - loss: 0.0923 - accuracy: 0.9739 | |
10784/48000 [=====>........................] - ETA: 3s - loss: 0.0937 - accuracy: 0.9739 | |
11296/48000 [======>.......................] - ETA: 3s - loss: 0.0940 - accuracy: 0.9735 | |
11808/48000 [======>.......................] - ETA: 3s - loss: 0.0945 - accuracy: 0.9731 | |
12288/48000 [======>.......................] - ETA: 3s - loss: 0.0952 - accuracy: 0.9730 | |
12704/48000 [======>.......................] - ETA: 3s - loss: 0.0967 - accuracy: 0.9724 | |
13248/48000 [=======>......................] - ETA: 3s - loss: 0.0952 - accuracy: 0.9728 | |
13728/48000 [=======>......................] - ETA: 3s - loss: 0.0950 - accuracy: 0.9727 | |
14240/48000 [=======>......................] - ETA: 3s - loss: 0.0950 - accuracy: 0.9728 | |
14752/48000 [========>.....................] - ETA: 3s - loss: 0.0953 - accuracy: 0.9729 | |
15264/48000 [========>.....................] - ETA: 3s - loss: 0.0954 - accuracy: 0.9728 | |
15712/48000 [========>.....................] - ETA: 3s - loss: 0.0943 - accuracy: 0.9731 | |
16224/48000 [=========>....................] - ETA: 3s - loss: 0.0945 - accuracy: 0.9728 | |
16704/48000 [=========>....................] - ETA: 3s - loss: 0.0942 - accuracy: 0.9730 | |
17216/48000 [=========>....................] - ETA: 3s - loss: 0.0944 - accuracy: 0.9730 | |
17760/48000 [==========>...................] - ETA: 3s - loss: 0.0935 - accuracy: 0.9733 | |
18272/48000 [==========>...................] - ETA: 3s - loss: 0.0929 - accuracy: 0.9733 | |
18848/48000 [==========>...................] - ETA: 3s - loss: 0.0925 - accuracy: 0.9733 | |
19392/48000 [===========>..................] - ETA: 2s - loss: 0.0923 - accuracy: 0.9732 | |
19936/48000 [===========>..................] - ETA: 2s - loss: 0.0920 - accuracy: 0.9732 | |
20480/48000 [===========>..................] - ETA: 2s - loss: 0.0922 - accuracy: 0.9730 | |
21088/48000 [============>.................] - ETA: 2s - loss: 0.0915 - accuracy: 0.9729 | |
21600/48000 [============>.................] - ETA: 2s - loss: 0.0917 - accuracy: 0.9726 | |
22144/48000 [============>.................] - ETA: 2s - loss: 0.0913 - accuracy: 0.9727 | |
22720/48000 [=============>................] - ETA: 2s - loss: 0.0907 - accuracy: 0.9726 | |
23232/48000 [=============>................] - ETA: 2s - loss: 0.0895 - accuracy: 0.9729 | |
23776/48000 [=============>................] - ETA: 2s - loss: 0.0896 - accuracy: 0.9729 | |
24256/48000 [==============>...............] - ETA: 2s - loss: 0.0904 - accuracy: 0.9728 | |
24704/48000 [==============>...............] - ETA: 2s - loss: 0.0898 - accuracy: 0.9730 | |
25184/48000 [==============>...............] - ETA: 2s - loss: 0.0896 - accuracy: 0.9730 | |
25696/48000 [===============>..............] - ETA: 2s - loss: 0.0897 - accuracy: 0.9730 | |
26240/48000 [===============>..............] - ETA: 2s - loss: 0.0901 - accuracy: 0.9729 | |
26720/48000 [===============>..............] - ETA: 2s - loss: 0.0902 - accuracy: 0.9729 | |
27264/48000 [================>.............] - ETA: 2s - loss: 0.0900 - accuracy: 0.9729 | |
27680/48000 [================>.............] - ETA: 2s - loss: 0.0904 - accuracy: 0.9728 | |
28160/48000 [================>.............] - ETA: 2s - loss: 0.0904 - accuracy: 0.9728 | |
28640/48000 [================>.............] - ETA: 2s - loss: 0.0903 - accuracy: 0.9728 | |
29088/48000 [=================>............] - ETA: 1s - loss: 0.0899 - accuracy: 0.9728 | |
29568/48000 [=================>............] - ETA: 1s - loss: 0.0898 - accuracy: 0.9728 | |
30048/48000 [=================>............] - ETA: 1s - loss: 0.0899 - accuracy: 0.9728 | |
30528/48000 [==================>...........] - ETA: 1s - loss: 0.0901 - accuracy: 0.9727 | |
31008/48000 [==================>...........] - ETA: 1s - loss: 0.0894 - accuracy: 0.9730 | |
31520/48000 [==================>...........] - ETA: 1s - loss: 0.0896 - accuracy: 0.9731 | |
32000/48000 [===================>..........] - ETA: 1s - loss: 0.0895 - accuracy: 0.9730 | |
32480/48000 [===================>..........] - ETA: 1s - loss: 0.0893 - accuracy: 0.9732 | |
32960/48000 [===================>..........] - ETA: 1s - loss: 0.0889 - accuracy: 0.9732 | |
33440/48000 [===================>..........] - ETA: 1s - loss: 0.0895 - accuracy: 0.9731 | |
33888/48000 [====================>.........] - ETA: 1s - loss: 0.0900 - accuracy: 0.9731 | |
34336/48000 [====================>.........] - ETA: 1s - loss: 0.0899 - accuracy: 0.9731 | |
34816/48000 [====================>.........] - ETA: 1s - loss: 0.0900 - accuracy: 0.9730 | |
35264/48000 [=====================>........] - ETA: 1s - loss: 0.0902 - accuracy: 0.9729 | |
35776/48000 [=====================>........] - ETA: 1s - loss: 0.0899 - accuracy: 0.9729 | |
36288/48000 [=====================>........] - ETA: 1s - loss: 0.0900 - accuracy: 0.9728 | |
36768/48000 [=====================>........] - ETA: 1s - loss: 0.0898 - accuracy: 0.9729 | |
37216/48000 [======================>.......] - ETA: 1s - loss: 0.0897 - accuracy: 0.9729 | |
37632/48000 [======================>.......] - ETA: 1s - loss: 0.0893 - accuracy: 0.9729 | |
38080/48000 [======================>.......] - ETA: 1s - loss: 0.0892 - accuracy: 0.9729 | |
38560/48000 [=======================>......] - ETA: 0s - loss: 0.0888 - accuracy: 0.9730 | |
39040/48000 [=======================>......] - ETA: 0s - loss: 0.0885 - accuracy: 0.9731 | |
39520/48000 [=======================>......] - ETA: 0s - loss: 0.0884 - accuracy: 0.9732 | |
40000/48000 [========================>.....] - ETA: 0s - loss: 0.0882 - accuracy: 0.9732 | |
40480/48000 [========================>.....] - ETA: 0s - loss: 0.0880 - accuracy: 0.9733 | |
40960/48000 [========================>.....] - ETA: 0s - loss: 0.0880 - accuracy: 0.9734 | |
41472/48000 [========================>.....] - ETA: 0s - loss: 0.0880 - accuracy: 0.9735 | |
41952/48000 [=========================>....] - ETA: 0s - loss: 0.0877 - accuracy: 0.9735 | |
42368/48000 [=========================>....] - ETA: 0s - loss: 0.0875 - accuracy: 0.9736 | |
42912/48000 [=========================>....] - ETA: 0s - loss: 0.0871 - accuracy: 0.9736 | |
43392/48000 [==========================>...] - ETA: 0s - loss: 0.0870 - accuracy: 0.9737 | |
43904/48000 [==========================>...] - ETA: 0s - loss: 0.0869 - accuracy: 0.9737 | |
44416/48000 [==========================>...] - ETA: 0s - loss: 0.0866 - accuracy: 0.9737 | |
44960/48000 [===========================>..] - ETA: 0s - loss: 0.0866 - accuracy: 0.9737 | |
45472/48000 [===========================>..] - ETA: 0s - loss: 0.0864 - accuracy: 0.9738 | |
45952/48000 [===========================>..] - ETA: 0s - loss: 0.0866 - accuracy: 0.9738 | |
46464/48000 [============================>.] - ETA: 0s - loss: 0.0867 - accuracy: 0.9738 | |
47040/48000 [============================>.] - ETA: 0s - loss: 0.0865 - accuracy: 0.9739 | |
47584/48000 [============================>.] - ETA: 0s - loss: 0.0866 - accuracy: 0.9739 | |
Epoch 00002: val_accuracy improved from 0.97925 to 0.98650, saving model to /workspace/_pylightnix/tmp/200428-17:54:28:846168+0300_out_af307179_s6kq1b3l/checkpoint.ckpt | |
48000/48000 [==============================] - 6s 120us/sample - loss: 0.0864 - accuracy: 0.9739 - val_loss: 0.0452 - val_accuracy: 0.9865 | |
Epoch 3/6 | |
32/48000 [..............................] - ETA: 10s - loss: 0.0230 - accuracy: 1.0000 | |
544/48000 [..............................] - ETA: 5s - loss: 0.0635 - accuracy: 0.9853 | |
1056/48000 [..............................] - ETA: 4s - loss: 0.0795 - accuracy: 0.9744 | |
1504/48000 [..............................] - ETA: 5s - loss: 0.0645 - accuracy: 0.9794 | |
2016/48000 [>.............................] - ETA: 4s - loss: 0.0598 - accuracy: 0.9816 | |
2528/48000 [>.............................] - ETA: 4s - loss: 0.0622 - accuracy: 0.9822 | |
3040/48000 [>.............................] - ETA: 4s - loss: 0.0618 - accuracy: 0.9809 | |
3520/48000 [=>............................] - ETA: 4s - loss: 0.0611 - accuracy: 0.9798 | |
4032/48000 [=>............................] - ETA: 4s - loss: 0.0642 - accuracy: 0.9784 | |
4512/48000 [=>............................] - ETA: 4s - loss: 0.0667 - accuracy: 0.9776 | |
4992/48000 [==>...........................] - ETA: 4s - loss: 0.0639 - accuracy: 0.9786 | |
5504/48000 [==>...........................] - ETA: 4s - loss: 0.0622 - accuracy: 0.9789 | |
6048/48000 [==>...........................] - ETA: 4s - loss: 0.0633 - accuracy: 0.9788 | |
6528/48000 [===>..........................] - ETA: 4s - loss: 0.0623 - accuracy: 0.9790 | |
7040/48000 [===>..........................] - ETA: 4s - loss: 0.0623 - accuracy: 0.9788 | |
7552/48000 [===>..........................] - ETA: 4s - loss: 0.0605 - accuracy: 0.9795 | |
8064/48000 [====>.........................] - ETA: 4s - loss: 0.0605 - accuracy: 0.9797 | |
8576/48000 [====>.........................] - ETA: 4s - loss: 0.0605 - accuracy: 0.9798 | |
9024/48000 [====>.........................] - ETA: 4s - loss: 0.0619 - accuracy: 0.9797 | |
9504/48000 [====>.........................] - ETA: 4s - loss: 0.0610 - accuracy: 0.9799 | |
9984/48000 [=====>........................] - ETA: 3s - loss: 0.0609 - accuracy: 0.9801 | |
10496/48000 [=====>........................] - ETA: 3s - loss: 0.0599 - accuracy: 0.9805 | |
11040/48000 [=====>........................] - ETA: 3s - loss: 0.0608 - accuracy: 0.9800 | |
11520/48000 [======>.......................] - ETA: 3s - loss: 0.0613 - accuracy: 0.9798 | |
12032/48000 [======>.......................] - ETA: 3s - loss: 0.0614 - accuracy: 0.9796 | |
12544/48000 [======>.......................] - ETA: 3s - loss: 0.0608 - accuracy: 0.9798 | |
13056/48000 [=======>......................] - ETA: 3s - loss: 0.0609 - accuracy: 0.9797 | |
13536/48000 [=======>......................] - ETA: 3s - loss: 0.0620 - accuracy: 0.9795 | |
14048/48000 [=======>......................] - ETA: 3s - loss: 0.0621 - accuracy: 0.9795 | |
14560/48000 [========>.....................] - ETA: 3s - loss: 0.0631 - accuracy: 0.9794 | |
15072/48000 [========>.....................] - ETA: 3s - loss: 0.0632 - accuracy: 0.9794 | |
15584/48000 [========>.....................] - ETA: 3s - loss: 0.0633 - accuracy: 0.9792 | |
16096/48000 [=========>....................] - ETA: 3s - loss: 0.0638 - accuracy: 0.9791 | |
16608/48000 [=========>....................] - ETA: 3s - loss: 0.0634 - accuracy: 0.9792 | |
17120/48000 [=========>....................] - ETA: 3s - loss: 0.0644 - accuracy: 0.9789 | |
17632/48000 [==========>...................] - ETA: 3s - loss: 0.0644 - accuracy: 0.9788 | |
18112/48000 [==========>...................] - ETA: 3s - loss: 0.0642 - accuracy: 0.9790 | |
18592/48000 [==========>...................] - ETA: 3s - loss: 0.0636 - accuracy: 0.9794 | |
19104/48000 [==========>...................] - ETA: 3s - loss: 0.0634 - accuracy: 0.9795 | |
19648/48000 [===========>..................] - ETA: 2s - loss: 0.0629 - accuracy: 0.9797 | |
20160/48000 [===========>..................] - ETA: 2s - loss: 0.0631 - accuracy: 0.9798 | |
20608/48000 [===========>..................] - ETA: 2s - loss: 0.0636 - accuracy: 0.9794 | |
21088/48000 [============>.................] - ETA: 2s - loss: 0.0632 - accuracy: 0.9794 | |
21536/48000 [============>.................] - ETA: 2s - loss: 0.0640 - accuracy: 0.9792 | |
22016/48000 [============>.................] - ETA: 2s - loss: 0.0633 - accuracy: 0.9794 | |
22528/48000 [=============>................] - ETA: 2s - loss: 0.0636 - accuracy: 0.9793 | |
23040/48000 [=============>................] - ETA: 2s - loss: 0.0640 - accuracy: 0.9793 | |
23616/48000 [=============>................] - ETA: 2s - loss: 0.0639 - accuracy: 0.9794 | |
24160/48000 [==============>...............] - ETA: 2s - loss: 0.0636 - accuracy: 0.9794 | |
24544/48000 [==============>...............] - ETA: 2s - loss: 0.0635 - accuracy: 0.9794 | |
25056/48000 [==============>...............] - ETA: 2s - loss: 0.0633 - accuracy: 0.9794 | |
25472/48000 [==============>...............] - ETA: 2s - loss: 0.0634 - accuracy: 0.9793 | |
25920/48000 [===============>..............] - ETA: 2s - loss: 0.0639 - accuracy: 0.9791 | |
26496/48000 [===============>..............] - ETA: 2s - loss: 0.0636 - accuracy: 0.9791 | |
27072/48000 [===============>..............] - ETA: 2s - loss: 0.0630 - accuracy: 0.9794 | |
27648/48000 [================>.............] - ETA: 2s - loss: 0.0629 - accuracy: 0.9793 | |
28192/48000 [================>.............] - ETA: 2s - loss: 0.0636 - accuracy: 0.9791 | |
28768/48000 [================>.............] - ETA: 1s - loss: 0.0634 - accuracy: 0.9793 | |
29344/48000 [=================>............] - ETA: 1s - loss: 0.0641 - accuracy: 0.9793 | |
29888/48000 [=================>............] - ETA: 1s - loss: 0.0642 - accuracy: 0.9794 | |
30368/48000 [=================>............] - ETA: 1s - loss: 0.0643 - accuracy: 0.9793 | |
30880/48000 [==================>...........] - ETA: 1s - loss: 0.0642 - accuracy: 0.9794 | |
31392/48000 [==================>...........] - ETA: 1s - loss: 0.0642 - accuracy: 0.9794 | |
31904/48000 [==================>...........] - ETA: 1s - loss: 0.0639 - accuracy: 0.9795 | |
32480/48000 [===================>..........] - ETA: 1s - loss: 0.0638 - accuracy: 0.9796 | |
33024/48000 [===================>..........] - ETA: 1s - loss: 0.0642 - accuracy: 0.9795 | |
33600/48000 [====================>.........] - ETA: 1s - loss: 0.0644 - accuracy: 0.9796 | |
34144/48000 [====================>.........] - ETA: 1s - loss: 0.0642 - accuracy: 0.9796 | |
34720/48000 [====================>.........] - ETA: 1s - loss: 0.0640 - accuracy: 0.9796 | |
35168/48000 [====================>.........] - ETA: 1s - loss: 0.0639 - accuracy: 0.9796 | |
35552/48000 [=====================>........] - ETA: 1s - loss: 0.0639 - accuracy: 0.9795 | |
36000/48000 [=====================>........] - ETA: 1s - loss: 0.0646 - accuracy: 0.9793 | |
36544/48000 [=====================>........] - ETA: 1s - loss: 0.0649 - accuracy: 0.9793 | |
37088/48000 [======================>.......] - ETA: 1s - loss: 0.0649 - accuracy: 0.9794 | |
37504/48000 [======================>.......] - ETA: 1s - loss: 0.0647 - accuracy: 0.9795 | |
37888/48000 [======================>.......] - ETA: 1s - loss: 0.0648 - accuracy: 0.9796 | |
38432/48000 [=======================>......] - ETA: 0s - loss: 0.0647 - accuracy: 0.9796 | |
38912/48000 [=======================>......] - ETA: 0s - loss: 0.0647 - accuracy: 0.9797 | |
39392/48000 [=======================>......] - ETA: 0s - loss: 0.0651 - accuracy: 0.9797 | |
39808/48000 [=======================>......] - ETA: 0s - loss: 0.0657 - accuracy: 0.9795 | |
40192/48000 [========================>.....] - ETA: 0s - loss: 0.0659 - accuracy: 0.9794 | |
40576/48000 [========================>.....] - ETA: 0s - loss: 0.0658 - accuracy: 0.9794 | |
40992/48000 [========================>.....] - ETA: 0s - loss: 0.0659 - accuracy: 0.9795 | |
41536/48000 [========================>.....] - ETA: 0s - loss: 0.0665 - accuracy: 0.9793 | |
42048/48000 [=========================>....] - ETA: 0s - loss: 0.0666 - accuracy: 0.9793 | |
42464/48000 [=========================>....] - ETA: 0s - loss: 0.0667 - accuracy: 0.9792 | |
42880/48000 [=========================>....] - ETA: 0s - loss: 0.0665 - accuracy: 0.9793 | |
43264/48000 [==========================>...] - ETA: 0s - loss: 0.0662 - accuracy: 0.9794 | |
43648/48000 [==========================>...] - ETA: 0s - loss: 0.0658 - accuracy: 0.9795 | |
44032/48000 [==========================>...] - ETA: 0s - loss: 0.0656 - accuracy: 0.9795 | |
44416/48000 [==========================>...] - ETA: 0s - loss: 0.0654 - accuracy: 0.9796 | |
44864/48000 [===========================>..] - ETA: 0s - loss: 0.0652 - accuracy: 0.9796 | |
45376/48000 [===========================>..] - ETA: 0s - loss: 0.0655 - accuracy: 0.9796 | |
45824/48000 [===========================>..] - ETA: 0s - loss: 0.0653 - accuracy: 0.9797 | |
46272/48000 [===========================>..] - ETA: 0s - loss: 0.0651 - accuracy: 0.9798 | |
46784/48000 [============================>.] - ETA: 0s - loss: 0.0650 - accuracy: 0.9799 | |
47232/48000 [============================>.] - ETA: 0s - loss: 0.0650 - accuracy: 0.9799 | |
47648/48000 [============================>.] - ETA: 0s - loss: 0.0650 - accuracy: 0.9798 | |
Epoch 00003: val_accuracy improved from 0.98650 to 0.98933, saving model to /workspace/_pylightnix/tmp/200428-17:54:28:846168+0300_out_af307179_s6kq1b3l/checkpoint.ckpt | |
48000/48000 [==============================] - 6s 125us/sample - loss: 0.0650 - accuracy: 0.9799 - val_loss: 0.0385 - val_accuracy: 0.9893 | |
Epoch 4/6 | |
32/48000 [..............................] - ETA: 8s - loss: 0.0679 - accuracy: 0.9688 | |
480/48000 [..............................] - ETA: 5s - loss: 0.0393 - accuracy: 0.9833 | |
992/48000 [..............................] - ETA: 5s - loss: 0.0318 - accuracy: 0.9869 | |
1504/48000 [..............................] - ETA: 4s - loss: 0.0402 - accuracy: 0.9867 | |
2048/48000 [>.............................] - ETA: 4s - loss: 0.0418 - accuracy: 0.9873 | |
2592/48000 [>.............................] - ETA: 4s - loss: 0.0489 - accuracy: 0.9861 | |
3136/48000 [>.............................] - ETA: 4s - loss: 0.0473 - accuracy: 0.9866 | |
3712/48000 [=>............................] - ETA: 4s - loss: 0.0480 - accuracy: 0.9863 | |
4256/48000 [=>............................] - ETA: 4s - loss: 0.0448 - accuracy: 0.9871 | |
4832/48000 [==>...........................] - ETA: 4s - loss: 0.0459 - accuracy: 0.9863 | |
5408/48000 [==>...........................] - ETA: 4s - loss: 0.0460 - accuracy: 0.9861 | |
5984/48000 [==>...........................] - ETA: 3s - loss: 0.0455 - accuracy: 0.9860 | |
6560/48000 [===>..........................] - ETA: 3s - loss: 0.0468 - accuracy: 0.9854 | |
7104/48000 [===>..........................] - ETA: 3s - loss: 0.0469 - accuracy: 0.9856 | |
7616/48000 [===>..........................] - ETA: 3s - loss: 0.0457 - accuracy: 0.9861 | |
8128/48000 [====>.........................] - ETA: 3s - loss: 0.0460 - accuracy: 0.9859 | |
8608/48000 [====>.........................] - ETA: 3s - loss: 0.0468 - accuracy: 0.9855 | |
9056/48000 [====>.........................] - ETA: 3s - loss: 0.0464 - accuracy: 0.9855 | |
9472/48000 [====>.........................] - ETA: 3s - loss: 0.0462 - accuracy: 0.9852 | |
9888/48000 [=====>........................] - ETA: 3s - loss: 0.0471 - accuracy: 0.9849 | |
10240/48000 [=====>........................] - ETA: 3s - loss: 0.0499 - accuracy: 0.9846 | |
10592/48000 [=====>........................] - ETA: 3s - loss: 0.0493 - accuracy: 0.9847 | |
11072/48000 [=====>........................] - ETA: 3s - loss: 0.0498 - accuracy: 0.9847 | |
11456/48000 [======>.......................] - ETA: 3s - loss: 0.0503 - accuracy: 0.9845 | |
11776/48000 [======>.......................] - ETA: 3s - loss: 0.0503 - accuracy: 0.9845 | |
12160/48000 [======>.......................] - ETA: 3s - loss: 0.0499 - accuracy: 0.9846 | |
12672/48000 [======>.......................] - ETA: 3s - loss: 0.0498 - accuracy: 0.9845 | |
13248/48000 [=======>......................] - ETA: 3s - loss: 0.0500 - accuracy: 0.9845 | |
13824/48000 [=======>......................] - ETA: 3s - loss: 0.0509 - accuracy: 0.9844 | |
14400/48000 [========>.....................] - ETA: 3s - loss: 0.0509 - accuracy: 0.9844 | |
14912/48000 [========>.....................] - ETA: 3s - loss: 0.0514 - accuracy: 0.9842 | |
15424/48000 [========>.....................] - ETA: 3s - loss: 0.0524 - accuracy: 0.9839 | |
16000/48000 [=========>....................] - ETA: 3s - loss: 0.0525 - accuracy: 0.9837 | |
16576/48000 [=========>....................] - ETA: 3s - loss: 0.0523 - accuracy: 0.9837 | |
17152/48000 [=========>....................] - ETA: 3s - loss: 0.0518 - accuracy: 0.9839 | |
17664/48000 [==========>...................] - ETA: 3s - loss: 0.0518 - accuracy: 0.9841 | |
18144/48000 [==========>...................] - ETA: 3s - loss: 0.0524 - accuracy: 0.9841 | |
18624/48000 [==========>...................] - ETA: 3s - loss: 0.0526 - accuracy: 0.9839 | |
18976/48000 [==========>...................] - ETA: 3s - loss: 0.0527 - accuracy: 0.9837 | |
19328/48000 [===========>..................] - ETA: 2s - loss: 0.0527 - accuracy: 0.9837 | |
19712/48000 [===========>..................] - ETA: 2s - loss: 0.0528 - accuracy: 0.9836 | |
20224/48000 [===========>..................] - ETA: 2s - loss: 0.0531 - accuracy: 0.9836 | |
20736/48000 [===========>..................] - ETA: 2s - loss: 0.0528 - accuracy: 0.9836 | |
21312/48000 [============>.................] - ETA: 2s - loss: 0.0529 - accuracy: 0.9836 | |
21824/48000 [============>.................] - ETA: 2s - loss: 0.0527 - accuracy: 0.9837 | |
22272/48000 [============>.................] - ETA: 2s - loss: 0.0520 - accuracy: 0.9839 | |
22720/48000 [=============>................] - ETA: 2s - loss: 0.0520 - accuracy: 0.9840 | |
23264/48000 [=============>................] - ETA: 2s - loss: 0.0516 - accuracy: 0.9841 | |
23776/48000 [=============>................] - ETA: 2s - loss: 0.0521 - accuracy: 0.9840 | |
24320/48000 [==============>...............] - ETA: 2s - loss: 0.0518 - accuracy: 0.9841 | |
24832/48000 [==============>...............] - ETA: 2s - loss: 0.0519 - accuracy: 0.9841 | |
25280/48000 [==============>...............] - ETA: 2s - loss: 0.0521 - accuracy: 0.9840 | |
25856/48000 [===============>..............] - ETA: 2s - loss: 0.0517 - accuracy: 0.9841 | |
26400/48000 [===============>..............] - ETA: 2s - loss: 0.0514 - accuracy: 0.9841 | |
26976/48000 [===============>..............] - ETA: 2s - loss: 0.0518 - accuracy: 0.9841 | |
27552/48000 [================>.............] - ETA: 2s - loss: 0.0523 - accuracy: 0.9841 | |
28096/48000 [================>.............] - ETA: 2s - loss: 0.0520 - accuracy: 0.9841 | |
28608/48000 [================>.............] - ETA: 2s - loss: 0.0527 - accuracy: 0.9841 | |
29088/48000 [=================>............] - ETA: 1s - loss: 0.0529 - accuracy: 0.9840 | |
29536/48000 [=================>............] - ETA: 1s - loss: 0.0528 - accuracy: 0.9841 | |
29920/48000 [=================>............] - ETA: 1s - loss: 0.0529 - accuracy: 0.9841 | |
30304/48000 [=================>............] - ETA: 1s - loss: 0.0530 - accuracy: 0.9839 | |
30784/48000 [==================>...........] - ETA: 1s - loss: 0.0525 - accuracy: 0.9841 | |
31232/48000 [==================>...........] - ETA: 1s - loss: 0.0525 - accuracy: 0.9841 | |
31584/48000 [==================>...........] - ETA: 1s - loss: 0.0523 - accuracy: 0.9841 | |
31904/48000 [==================>...........] - ETA: 1s - loss: 0.0520 - accuracy: 0.9842 | |
32256/48000 [===================>..........] - ETA: 1s - loss: 0.0519 - accuracy: 0.9842 | |
32640/48000 [===================>..........] - ETA: 1s - loss: 0.0518 - accuracy: 0.9843 | |
33024/48000 [===================>..........] - ETA: 1s - loss: 0.0517 - accuracy: 0.9842 | |
33536/48000 [===================>..........] - ETA: 1s - loss: 0.0513 - accuracy: 0.9842 | |
33984/48000 [====================>.........] - ETA: 1s - loss: 0.0512 - accuracy: 0.9843 | |
34464/48000 [====================>.........] - ETA: 1s - loss: 0.0510 - accuracy: 0.9844 | |
35008/48000 [====================>.........] - ETA: 1s - loss: 0.0510 - accuracy: 0.9844 | |
35584/48000 [=====================>........] - ETA: 1s - loss: 0.0515 - accuracy: 0.9842 | |
36128/48000 [=====================>........] - ETA: 1s - loss: 0.0514 - accuracy: 0.9843 | |
36672/48000 [=====================>........] - ETA: 1s - loss: 0.0514 - accuracy: 0.9843 | |
37248/48000 [======================>.......] - ETA: 1s - loss: 0.0516 - accuracy: 0.9843 | |
37760/48000 [======================>.......] - ETA: 1s - loss: 0.0515 - accuracy: 0.9844 | |
38336/48000 [======================>.......] - ETA: 1s - loss: 0.0515 - accuracy: 0.9843 | |
38848/48000 [=======================>......] - ETA: 0s - loss: 0.0517 - accuracy: 0.9841 | |
39424/48000 [=======================>......] - ETA: 0s - loss: 0.0521 - accuracy: 0.9840 | |
40000/48000 [========================>.....] - ETA: 0s - loss: 0.0522 - accuracy: 0.9839 | |
40576/48000 [========================>.....] - ETA: 0s - loss: 0.0526 - accuracy: 0.9837 | |
40992/48000 [========================>.....] - ETA: 0s - loss: 0.0525 - accuracy: 0.9838 | |
41344/48000 [========================>.....] - ETA: 0s - loss: 0.0524 - accuracy: 0.9837 | |
41728/48000 [=========================>....] - ETA: 0s - loss: 0.0525 - accuracy: 0.9837 | |
42240/48000 [=========================>....] - ETA: 0s - loss: 0.0522 - accuracy: 0.9837 | |
42688/48000 [=========================>....] - ETA: 0s - loss: 0.0522 - accuracy: 0.9837 | |
43200/48000 [==========================>...] - ETA: 0s - loss: 0.0523 - accuracy: 0.9836 | |
43648/48000 [==========================>...] - ETA: 0s - loss: 0.0525 - accuracy: 0.9836 | |
44096/48000 [==========================>...] - ETA: 0s - loss: 0.0524 - accuracy: 0.9837 | |
44544/48000 [==========================>...] - ETA: 0s - loss: 0.0524 - accuracy: 0.9837 | |
45056/48000 [===========================>..] - ETA: 0s - loss: 0.0521 - accuracy: 0.9838 | |
45472/48000 [===========================>..] - ETA: 0s - loss: 0.0520 - accuracy: 0.9839 | |
45984/48000 [===========================>..] - ETA: 0s - loss: 0.0518 - accuracy: 0.9839 | |
46496/48000 [============================>.] - ETA: 0s - loss: 0.0518 - accuracy: 0.9838 | |
46976/48000 [============================>.] - ETA: 0s - loss: 0.0516 - accuracy: 0.9839 | |
47488/48000 [============================>.] - ETA: 0s - loss: 0.0517 - accuracy: 0.9837 | |
47872/48000 [============================>.] - ETA: 0s - loss: 0.0516 - accuracy: 0.9837 | |
Epoch 00004: val_accuracy improved from 0.98933 to 0.98958, saving model to /workspace/_pylightnix/tmp/200428-17:54:28:846168+0300_out_af307179_s6kq1b3l/checkpoint.ckpt | |
48000/48000 [==============================] - 6s 122us/sample - loss: 0.0515 - accuracy: 0.9837 - val_loss: 0.0389 - val_accuracy: 0.9896 | |
Epoch 5/6 | |
32/48000 [..............................] - ETA: 11s - loss: 0.0129 - accuracy: 1.0000 | |
480/48000 [..............................] - ETA: 5s - loss: 0.0255 - accuracy: 0.9937 | |
928/48000 [..............................] - ETA: 5s - loss: 0.0329 - accuracy: 0.9892 | |
1376/48000 [..............................] - ETA: 5s - loss: 0.0350 - accuracy: 0.9884 | |
1760/48000 [>.............................] - ETA: 5s - loss: 0.0351 - accuracy: 0.9886 | |
2208/48000 [>.............................] - ETA: 5s - loss: 0.0359 - accuracy: 0.9882 | |
2624/48000 [>.............................] - ETA: 5s - loss: 0.0396 - accuracy: 0.9878 | |
2976/48000 [>.............................] - ETA: 5s - loss: 0.0416 - accuracy: 0.9869 | |
3456/48000 [=>............................] - ETA: 5s - loss: 0.0455 - accuracy: 0.9867 | |
3840/48000 [=>............................] - ETA: 5s - loss: 0.0427 - accuracy: 0.9878 | |
4320/48000 [=>............................] - ETA: 5s - loss: 0.0432 - accuracy: 0.9880 | |
4832/48000 [==>...........................] - ETA: 5s - loss: 0.0439 - accuracy: 0.9878 | |
5344/48000 [==>...........................] - ETA: 5s - loss: 0.0425 - accuracy: 0.9884 | |
5696/48000 [==>...........................] - ETA: 5s - loss: 0.0407 - accuracy: 0.9888 | |
6080/48000 [==>...........................] - ETA: 5s - loss: 0.0401 - accuracy: 0.9887 | |
6432/48000 [===>..........................] - ETA: 5s - loss: 0.0402 - accuracy: 0.9887 | |
6752/48000 [===>..........................] - ETA: 5s - loss: 0.0413 - accuracy: 0.9880 | |
7104/48000 [===>..........................] - ETA: 5s - loss: 0.0410 - accuracy: 0.9880 | |
7552/48000 [===>..........................] - ETA: 5s - loss: 0.0405 - accuracy: 0.9882 | |
7968/48000 [===>..........................] - ETA: 4s - loss: 0.0405 - accuracy: 0.9881 | |
8512/48000 [====>.........................] - ETA: 4s - loss: 0.0406 - accuracy: 0.9880 | |
9088/48000 [====>.........................] - ETA: 4s - loss: 0.0390 - accuracy: 0.9884 | |
9632/48000 [=====>........................] - ETA: 4s - loss: 0.0392 - accuracy: 0.9886 | |
10144/48000 [=====>........................] - ETA: 4s - loss: 0.0408 - accuracy: 0.9880 | |
10688/48000 [=====>........................] - ETA: 4s - loss: 0.0405 - accuracy: 0.9881 | |
11264/48000 [======>.......................] - ETA: 4s - loss: 0.0412 - accuracy: 0.9879 | |
11840/48000 [======>.......................] - ETA: 4s - loss: 0.0412 - accuracy: 0.9878 | |
12416/48000 [======>.......................] - ETA: 4s - loss: 0.0419 - accuracy: 0.9878 | |
12992/48000 [=======>......................] - ETA: 3s - loss: 0.0420 - accuracy: 0.9878 | |
13568/48000 [=======>......................] - ETA: 3s - loss: 0.0428 - accuracy: 0.9875 | |
14048/48000 [=======>......................] - ETA: 3s - loss: 0.0432 - accuracy: 0.9873 | |
14592/48000 [========>.....................] - ETA: 3s - loss: 0.0438 - accuracy: 0.9871 | |
15104/48000 [========>.....................] - ETA: 3s - loss: 0.0435 - accuracy: 0.9871 | |
15680/48000 [========>.....................] - ETA: 3s - loss: 0.0438 - accuracy: 0.9869 | |
16256/48000 [=========>....................] - ETA: 3s - loss: 0.0439 - accuracy: 0.9868 | |
16736/48000 [=========>....................] - ETA: 3s - loss: 0.0456 - accuracy: 0.9866 | |
17280/48000 [=========>....................] - ETA: 3s - loss: 0.0455 - accuracy: 0.9866 | |
17824/48000 [==========>...................] - ETA: 3s - loss: 0.0458 - accuracy: 0.9865 | |
18368/48000 [==========>...................] - ETA: 3s - loss: 0.0454 - accuracy: 0.9864 | |
18912/48000 [==========>...................] - ETA: 3s - loss: 0.0452 - accuracy: 0.9865 | |
19456/48000 [===========>..................] - ETA: 3s - loss: 0.0459 - accuracy: 0.9862 | |
20000/48000 [===========>..................] - ETA: 2s - loss: 0.0454 - accuracy: 0.9864 | |
20576/48000 [===========>..................] - ETA: 2s - loss: 0.0450 - accuracy: 0.9864 | |
21120/48000 [============>.................] - ETA: 2s - loss: 0.0450 - accuracy: 0.9865 | |
21696/48000 [============>.................] - ETA: 2s - loss: 0.0451 - accuracy: 0.9864 | |
22272/48000 [============>.................] - ETA: 2s - loss: 0.0451 - accuracy: 0.9864 | |
22880/48000 [=============>................] - ETA: 2s - loss: 0.0453 - accuracy: 0.9863 | |
23264/48000 [=============>................] - ETA: 2s - loss: 0.0457 - accuracy: 0.9860 | |
23616/48000 [=============>................] - ETA: 2s - loss: 0.0458 - accuracy: 0.9860 | |
23968/48000 [=============>................] - ETA: 2s - loss: 0.0461 - accuracy: 0.9858 | |
24352/48000 [==============>...............] - ETA: 2s - loss: 0.0459 - accuracy: 0.9858 | |
24800/48000 [==============>...............] - ETA: 2s - loss: 0.0460 - accuracy: 0.9857 | |
25184/48000 [==============>...............] - ETA: 2s - loss: 0.0459 - accuracy: 0.9858 | |
25536/48000 [==============>...............] - ETA: 2s - loss: 0.0461 - accuracy: 0.9858 | |
25824/48000 [===============>..............] - ETA: 2s - loss: 0.0458 - accuracy: 0.9859 | |
26144/48000 [===============>..............] - ETA: 2s - loss: 0.0455 - accuracy: 0.9860 | |
26624/48000 [===============>..............] - ETA: 2s - loss: 0.0454 - accuracy: 0.9860 | |
27104/48000 [===============>..............] - ETA: 2s - loss: 0.0456 - accuracy: 0.9859 | |
27584/48000 [================>.............] - ETA: 2s - loss: 0.0462 - accuracy: 0.9858 | |
28096/48000 [================>.............] - ETA: 2s - loss: 0.0457 - accuracy: 0.9859 | |
28608/48000 [================>.............] - ETA: 2s - loss: 0.0456 - accuracy: 0.9859 | |
29120/48000 [=================>............] - ETA: 2s - loss: 0.0451 - accuracy: 0.9861 | |
29600/48000 [=================>............] - ETA: 1s - loss: 0.0453 - accuracy: 0.9860 | |
29984/48000 [=================>............] - ETA: 1s - loss: 0.0450 - accuracy: 0.9861 | |
30368/48000 [=================>............] - ETA: 1s - loss: 0.0456 - accuracy: 0.9859 | |
30848/48000 [==================>...........] - ETA: 1s - loss: 0.0458 - accuracy: 0.9859 | |
31360/48000 [==================>...........] - ETA: 1s - loss: 0.0458 - accuracy: 0.9859 | |
31904/48000 [==================>...........] - ETA: 1s - loss: 0.0456 - accuracy: 0.9859 | |
32448/48000 [===================>..........] - ETA: 1s - loss: 0.0456 - accuracy: 0.9859 | |
32992/48000 [===================>..........] - ETA: 1s - loss: 0.0454 - accuracy: 0.9860 | |
33568/48000 [===================>..........] - ETA: 1s - loss: 0.0453 - accuracy: 0.9859 | |
34112/48000 [====================>.........] - ETA: 1s - loss: 0.0451 - accuracy: 0.9860 | |
34592/48000 [====================>.........] - ETA: 1s - loss: 0.0451 - accuracy: 0.9860 | |
35040/48000 [====================>.........] - ETA: 1s - loss: 0.0448 - accuracy: 0.9861 | |
35584/48000 [=====================>........] - ETA: 1s - loss: 0.0448 - accuracy: 0.9860 | |
36032/48000 [=====================>........] - ETA: 1s - loss: 0.0448 - accuracy: 0.9860 | |
36544/48000 [=====================>........] - ETA: 1s - loss: 0.0446 - accuracy: 0.9860 | |
37056/48000 [======================>.......] - ETA: 1s - loss: 0.0451 - accuracy: 0.9860 | |
37632/48000 [======================>.......] - ETA: 1s - loss: 0.0452 - accuracy: 0.9860 | |
38240/48000 [======================>.......] - ETA: 1s - loss: 0.0457 - accuracy: 0.9859 | |
38784/48000 [=======================>......] - ETA: 0s - loss: 0.0461 - accuracy: 0.9859 | |
39360/48000 [=======================>......] - ETA: 0s - loss: 0.0460 - accuracy: 0.9859 | |
39904/48000 [=======================>......] - ETA: 0s - loss: 0.0459 - accuracy: 0.9859 | |
40448/48000 [========================>.....] - ETA: 0s - loss: 0.0461 - accuracy: 0.9858 | |
40960/48000 [========================>.....] - ETA: 0s - loss: 0.0460 - accuracy: 0.9858 | |
41536/48000 [========================>.....] - ETA: 0s - loss: 0.0459 - accuracy: 0.9857 | |
42080/48000 [=========================>....] - ETA: 0s - loss: 0.0457 - accuracy: 0.9857 | |
42624/48000 [=========================>....] - ETA: 0s - loss: 0.0457 - accuracy: 0.9857 | |
43200/48000 [==========================>...] - ETA: 0s - loss: 0.0455 - accuracy: 0.9858 | |
43776/48000 [==========================>...] - ETA: 0s - loss: 0.0455 - accuracy: 0.9858 | |
44320/48000 [==========================>...] - ETA: 0s - loss: 0.0454 - accuracy: 0.9858 | |
44832/48000 [===========================>..] - ETA: 0s - loss: 0.0453 - accuracy: 0.9858 | |
45248/48000 [===========================>..] - ETA: 0s - loss: 0.0453 - accuracy: 0.9859 | |
45760/48000 [===========================>..] - ETA: 0s - loss: 0.0454 - accuracy: 0.9859 | |
46336/48000 [===========================>..] - ETA: 0s - loss: 0.0457 - accuracy: 0.9858 | |
46816/48000 [============================>.] - ETA: 0s - loss: 0.0456 - accuracy: 0.9858 | |
47360/48000 [============================>.] - ETA: 0s - loss: 0.0456 - accuracy: 0.9859 | |
47840/48000 [============================>.] - ETA: 0s - loss: 0.0460 - accuracy: 0.9858 | |
Epoch 00005: val_accuracy improved from 0.98958 to 0.98992, saving model to /workspace/_pylightnix/tmp/200428-17:54:28:846168+0300_out_af307179_s6kq1b3l/checkpoint.ckpt | |
48000/48000 [==============================] - 6s 121us/sample - loss: 0.0459 - accuracy: 0.9858 - val_loss: 0.0344 - val_accuracy: 0.9899 | |
Epoch 6/6 | |
32/48000 [..............................] - ETA: 11s - loss: 2.3236e-04 - accuracy: 1.0000 | |
512/48000 [..............................] - ETA: 5s - loss: 0.0340 - accuracy: 0.9883 | |
928/48000 [..............................] - ETA: 5s - loss: 0.0370 - accuracy: 0.9871 | |
1280/48000 [..............................] - ETA: 5s - loss: 0.0360 - accuracy: 0.9875 | |
1664/48000 [>.............................] - ETA: 6s - loss: 0.0321 - accuracy: 0.9892 | |
2080/48000 [>.............................] - ETA: 5s - loss: 0.0324 - accuracy: 0.9889 | |
2432/48000 [>.............................] - ETA: 5s - loss: 0.0346 - accuracy: 0.9868 | |
2944/48000 [>.............................] - ETA: 5s - loss: 0.0308 - accuracy: 0.9885 | |
3488/48000 [=>............................] - ETA: 5s - loss: 0.0333 - accuracy: 0.9882 | |
4000/48000 [=>............................] - ETA: 5s - loss: 0.0344 - accuracy: 0.9890 | |
4544/48000 [=>............................] - ETA: 5s - loss: 0.0333 - accuracy: 0.9890 | |
5024/48000 [==>...........................] - ETA: 4s - loss: 0.0333 - accuracy: 0.9891 | |
5568/48000 [==>...........................] - ETA: 4s - loss: 0.0326 - accuracy: 0.9894 | |
6080/48000 [==>...........................] - ETA: 4s - loss: 0.0337 - accuracy: 0.9890 | |
6592/48000 [===>..........................] - ETA: 4s - loss: 0.0335 - accuracy: 0.9894 | |
6976/48000 [===>..........................] - ETA: 4s - loss: 0.0327 - accuracy: 0.9897 | |
7360/48000 [===>..........................] - ETA: 4s - loss: 0.0319 - accuracy: 0.9898 | |
7744/48000 [===>..........................] - ETA: 4s - loss: 0.0329 - accuracy: 0.9895 | |
8128/48000 [====>.........................] - ETA: 4s - loss: 0.0323 - accuracy: 0.9898 | |
8512/48000 [====>.........................] - ETA: 4s - loss: 0.0325 - accuracy: 0.9895 | |
8928/48000 [====>.........................] - ETA: 4s - loss: 0.0325 - accuracy: 0.9895 | |
9312/48000 [====>.........................] - ETA: 4s - loss: 0.0329 - accuracy: 0.9893 | |
9728/48000 [=====>........................] - ETA: 4s - loss: 0.0334 - accuracy: 0.9891 | |
10176/48000 [=====>........................] - ETA: 4s - loss: 0.0338 - accuracy: 0.9887 | |
10688/48000 [=====>........................] - ETA: 4s - loss: 0.0341 - accuracy: 0.9886 | |
11168/48000 [=====>........................] - ETA: 4s - loss: 0.0337 - accuracy: 0.9888 | |
11680/48000 [======>.......................] - ETA: 4s - loss: 0.0339 - accuracy: 0.9887 | |
12160/48000 [======>.......................] - ETA: 4s - loss: 0.0347 - accuracy: 0.9887 | |
12608/48000 [======>.......................] - ETA: 4s - loss: 0.0345 - accuracy: 0.9887 | |
12960/48000 [=======>......................] - ETA: 4s - loss: 0.0346 - accuracy: 0.9886 | |
13312/48000 [=======>......................] - ETA: 4s - loss: 0.0353 - accuracy: 0.9885 | |
13664/48000 [=======>......................] - ETA: 4s - loss: 0.0358 - accuracy: 0.9883 | |
14080/48000 [=======>......................] - ETA: 4s - loss: 0.0356 - accuracy: 0.9883 | |
14656/48000 [========>.....................] - ETA: 3s - loss: 0.0357 - accuracy: 0.9881 | |
15200/48000 [========>.....................] - ETA: 3s - loss: 0.0353 - accuracy: 0.9882 | |
15776/48000 [========>.....................] - ETA: 3s - loss: 0.0356 - accuracy: 0.9880 | |
16352/48000 [=========>....................] - ETA: 3s - loss: 0.0350 - accuracy: 0.9882 | |
16896/48000 [=========>....................] - ETA: 3s - loss: 0.0364 - accuracy: 0.9876 | |
17440/48000 [=========>....................] - ETA: 3s - loss: 0.0371 - accuracy: 0.9873 | |
17952/48000 [==========>...................] - ETA: 3s - loss: 0.0371 - accuracy: 0.9872 | |
18496/48000 [==========>...................] - ETA: 3s - loss: 0.0379 - accuracy: 0.9869 | |
19040/48000 [==========>...................] - ETA: 3s - loss: 0.0382 - accuracy: 0.9868 | |
19584/48000 [===========>..................] - ETA: 3s - loss: 0.0384 - accuracy: 0.9867 | |
20160/48000 [===========>..................] - ETA: 3s - loss: 0.0385 - accuracy: 0.9868 | |
20736/48000 [===========>..................] - ETA: 3s - loss: 0.0391 - accuracy: 0.9865 | |
21248/48000 [============>.................] - ETA: 2s - loss: 0.0391 - accuracy: 0.9866 | |
21728/48000 [============>.................] - ETA: 2s - loss: 0.0391 - accuracy: 0.9866 | |
22208/48000 [============>.................] - ETA: 2s - loss: 0.0393 - accuracy: 0.9864 | |
22624/48000 [=============>................] - ETA: 2s - loss: 0.0395 - accuracy: 0.9864 | |
23040/48000 [=============>................] - ETA: 2s - loss: 0.0402 - accuracy: 0.9862 | |
23456/48000 [=============>................] - ETA: 2s - loss: 0.0399 - accuracy: 0.9863 | |
24000/48000 [==============>...............] - ETA: 2s - loss: 0.0396 - accuracy: 0.9864 | |
24480/48000 [==============>...............] - ETA: 2s - loss: 0.0400 - accuracy: 0.9862 | |
25024/48000 [==============>...............] - ETA: 2s - loss: 0.0401 - accuracy: 0.9862 | |
25440/48000 [==============>...............] - ETA: 2s - loss: 0.0402 - accuracy: 0.9862 | |
25824/48000 [===============>..............] - ETA: 2s - loss: 0.0399 - accuracy: 0.9863 | |
26304/48000 [===============>..............] - ETA: 2s - loss: 0.0404 - accuracy: 0.9862 | |
26784/48000 [===============>..............] - ETA: 2s - loss: 0.0405 - accuracy: 0.9862 | |
27328/48000 [================>.............] - ETA: 2s - loss: 0.0405 - accuracy: 0.9861 | |
27840/48000 [================>.............] - ETA: 2s - loss: 0.0403 - accuracy: 0.9862 | |
28352/48000 [================>.............] - ETA: 2s - loss: 0.0408 - accuracy: 0.9860 | |
28832/48000 [=================>............] - ETA: 2s - loss: 0.0406 - accuracy: 0.9861 | |
29376/48000 [=================>............] - ETA: 2s - loss: 0.0403 - accuracy: 0.9861 | |
29856/48000 [=================>............] - ETA: 1s - loss: 0.0399 - accuracy: 0.9863 | |
30240/48000 [=================>............] - ETA: 1s - loss: 0.0403 - accuracy: 0.9863 | |
30592/48000 [==================>...........] - ETA: 1s - loss: 0.0402 - accuracy: 0.9863 | |
30944/48000 [==================>...........] - ETA: 1s - loss: 0.0400 - accuracy: 0.9864 | |
31296/48000 [==================>...........] - ETA: 1s - loss: 0.0401 - accuracy: 0.9864 | |
31648/48000 [==================>...........] - ETA: 1s - loss: 0.0400 - accuracy: 0.9865 | |
32128/48000 [===================>..........] - ETA: 1s - loss: 0.0398 - accuracy: 0.9865 | |
32608/48000 [===================>..........] - ETA: 1s - loss: 0.0399 - accuracy: 0.9865 | |
33152/48000 [===================>..........] - ETA: 1s - loss: 0.0399 - accuracy: 0.9865 | |
33696/48000 [====================>.........] - ETA: 1s - loss: 0.0399 - accuracy: 0.9865 | |
34240/48000 [====================>.........] - ETA: 1s - loss: 0.0402 - accuracy: 0.9863 | |
34656/48000 [====================>.........] - ETA: 1s - loss: 0.0405 - accuracy: 0.9864 | |
35168/48000 [====================>.........] - ETA: 1s - loss: 0.0408 - accuracy: 0.9864 | |
35712/48000 [=====================>........] - ETA: 1s - loss: 0.0404 - accuracy: 0.9865 | |
36256/48000 [=====================>........] - ETA: 1s - loss: 0.0407 - accuracy: 0.9864 | |
36800/48000 [======================>.......] - ETA: 1s - loss: 0.0405 - accuracy: 0.9865 | |
37312/48000 [======================>.......] - ETA: 1s - loss: 0.0403 - accuracy: 0.9866 | |
37856/48000 [======================>.......] - ETA: 1s - loss: 0.0403 - accuracy: 0.9865 | |
38368/48000 [======================>.......] - ETA: 1s - loss: 0.0401 - accuracy: 0.9866 | |
38880/48000 [=======================>......] - ETA: 0s - loss: 0.0408 - accuracy: 0.9864 | |
39392/48000 [=======================>......] - ETA: 0s - loss: 0.0408 - accuracy: 0.9863 | |
39936/48000 [=======================>......] - ETA: 0s - loss: 0.0409 - accuracy: 0.9864 | |
40416/48000 [========================>.....] - ETA: 0s - loss: 0.0407 - accuracy: 0.9864 | |
40928/48000 [========================>.....] - ETA: 0s - loss: 0.0405 - accuracy: 0.9865 | |
41408/48000 [========================>.....] - ETA: 0s - loss: 0.0406 - accuracy: 0.9865 | |
41856/48000 [=========================>....] - ETA: 0s - loss: 0.0406 - accuracy: 0.9866 | |
42368/48000 [=========================>....] - ETA: 0s - loss: 0.0405 - accuracy: 0.9866 | |
42912/48000 [=========================>....] - ETA: 0s - loss: 0.0404 - accuracy: 0.9867 | |
43424/48000 [==========================>...] - ETA: 0s - loss: 0.0403 - accuracy: 0.9867 | |
43968/48000 [==========================>...] - ETA: 0s - loss: 0.0404 - accuracy: 0.9867 | |
44352/48000 [==========================>...] - ETA: 0s - loss: 0.0402 - accuracy: 0.9868 | |
44736/48000 [==========================>...] - ETA: 0s - loss: 0.0401 - accuracy: 0.9869 | |
45088/48000 [===========================>..] - ETA: 0s - loss: 0.0400 - accuracy: 0.9869 | |
45536/48000 [===========================>..] - ETA: 0s - loss: 0.0398 - accuracy: 0.9870 | |
45920/48000 [===========================>..] - ETA: 0s - loss: 0.0396 - accuracy: 0.9871 | |
46400/48000 [============================>.] - ETA: 0s - loss: 0.0394 - accuracy: 0.9871 | |
46848/48000 [============================>.] - ETA: 0s - loss: 0.0394 - accuracy: 0.9871 | |
47424/48000 [============================>.] - ETA: 0s - loss: 0.0395 - accuracy: 0.9871 | |
Epoch 00006: val_accuracy improved from 0.98992 to 0.99117, saving model to /workspace/_pylightnix/tmp/200428-17:54:28:846168+0300_out_af307179_s6kq1b3l/checkpoint.ckpt | |
48000/48000 [==============================] - 6s 125us/sample - loss: 0.0396 - accuracy: 0.9870 - val_loss: 0.0358 - val_accuracy: 0.9912</code></pre> | |
<pre class="stderr"><code>2020-04-28 17:54:29.068670: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcuda.so.1 | |
2020-04-28 17:54:29.086580: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1555] Found device 0 with properties: | |
pciBusID: 0000:65:00.0 name: GeForce GTX 1080 Ti computeCapability: 6.1 | |
coreClock: 1.6705GHz coreCount: 28 deviceMemorySize: 10.91GiB deviceMemoryBandwidth: 451.17GiB/s | |
2020-04-28 17:54:29.086798: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.0 | |
2020-04-28 17:54:29.087843: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10.0 | |
2020-04-28 17:54:29.088788: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcufft.so.10.0 | |
2020-04-28 17:54:29.089063: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcurand.so.10.0 | |
2020-04-28 17:54:29.090293: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusolver.so.10.0 | |
2020-04-28 17:54:29.091240: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusparse.so.10.0 | |
2020-04-28 17:54:29.094081: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7 | |
2020-04-28 17:54:29.095224: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1697] Adding visible gpu devices: 0 | |
2020-04-28 17:54:29.115775: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 3300000000 Hz | |
2020-04-28 17:54:29.117609: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x42b0100 initialized for platform Host (this does not guarantee that XLA will be used). Devices: | |
2020-04-28 17:54:29.117654: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): Host, Default Version | |
2020-04-28 17:54:29.200583: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x42a6cf0 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices: | |
2020-04-28 17:54:29.200654: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): GeForce GTX 1080 Ti, Compute Capability 6.1 | |
2020-04-28 17:54:29.201866: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1555] Found device 0 with properties: | |
pciBusID: 0000:65:00.0 name: GeForce GTX 1080 Ti computeCapability: 6.1 | |
coreClock: 1.6705GHz coreCount: 28 deviceMemorySize: 10.91GiB deviceMemoryBandwidth: 451.17GiB/s | |
2020-04-28 17:54:29.201934: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.0 | |
2020-04-28 17:54:29.201959: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10.0 | |
2020-04-28 17:54:29.201980: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcufft.so.10.0 | |
2020-04-28 17:54:29.202009: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcurand.so.10.0 | |
2020-04-28 17:54:29.202030: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusolver.so.10.0 | |
2020-04-28 17:54:29.202053: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusparse.so.10.0 | |
2020-04-28 17:54:29.202075: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7 | |
2020-04-28 17:54:29.203998: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1697] Adding visible gpu devices: 0 | |
2020-04-28 17:54:29.204060: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.0 | |
2020-04-28 17:54:29.206160: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1096] Device interconnect StreamExecutor with strength 1 edge matrix: | |
2020-04-28 17:54:29.206187: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1102] 0 | |
2020-04-28 17:54:29.206202: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] 0: N | |
2020-04-28 17:54:29.208244: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1241] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 9807 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:65:00.0, compute capability: 6.1) | |
2020-04-28 17:54:30.069657: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10.0 | |
2020-04-28 17:54:30.194051: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7 | |
2020-04-28 17:54:30.849585: I tensorflow/core/profiler/lib/profiler_session.cc:225] Profiler session started. | |
2020-04-28 17:54:30.849637: I tensorflow/core/profiler/internal/gpu/cupti_tracer.cc:1259] Profiler found 1 GPUs | |
2020-04-28 17:54:30.849875: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcupti.so.10.0'; dlerror: libcupti.so.10.0: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64 | |
2020-04-28 17:54:30.849894: E tensorflow/core/profiler/internal/gpu/cupti_tracer.cc:1307] function cupti_interface_->Subscribe( &subscriber_, (CUpti_CallbackFunc)ApiCallback, this)failed with error CUPTI could not be loaded or symbol could not be found. | |
2020-04-28 17:54:30.849903: E tensorflow/core/profiler/internal/gpu/cupti_tracer.cc:1346] function cupti_interface_->ActivityRegisterCallbacks( AllocCuptiActivityBuffer, FreeCuptiActivityBuffer)failed with error CUPTI could not be loaded or symbol could not be found. | |
2020-04-28 17:54:30.856060: E tensorflow/core/profiler/internal/gpu/cupti_tracer.cc:1329] function cupti_interface_->EnableCallback( 0 , subscriber_, CUPTI_CB_DOMAIN_DRIVER_API, cbid)failed with error CUPTI could not be loaded or symbol could not be found. | |
2020-04-28 17:54:30.856104: I tensorflow/core/profiler/internal/gpu/device_tracer.cc:88] GpuTracer has collected 0 callback api events and 0 activity events.</code></pre> | |
</body> | |
</html> |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment