Last active
January 12, 2019 17:17
-
-
Save sergeyprokudin/22a80cf23fbe217496e3dc2196a6f1db to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
def pca(x, n_components): | |
""" Principal component analysis of the data | |
m - number of samples | |
n - number of dimensions | |
k - number of components | |
TL;DR: | |
(a) compute the covariance matrix x.T@x | |
(b) find k max eigenvectors (i.e. vectors corresponding to max eigenvalues) | |
(c) to compress: x@v, to decompress: x@[email protected] | |
v = np.eig(x.T@x)[:,0:n_components] | |
Find a pair of matrice V \in R^(k*n), W \in R^{n*k}: | |
V*,W* = argmin_{V, W}{\sum_{i=1}^{m}||x_i - V*W*x_i||^2} (1) | |
Lemma. If (V, W) - solution of (1) => | |
(a) V - orthonormal, i.e. V^T*V = I | |
(b) W = V^T | |
Proof: lemma 23.1 from "Understanding Machine Learning" by Shalev-Schwartz, Ben-David | |
=> | |
We need to find a matrix V* such that: | |
V* = argmin_{V: V^T*V=I}{\sum_{i=1}^{m}{||x_i - V*V^T*x_i||^2}} (2) | |
Algo #1: loss function is convex => gradient decent will do the job. | |
Algo #2: exact solution. | |
property 1: ||x-y||^2 = ||x||^2 - 2*y^T*x + y^T*y (3) | |
property 2: (ABC)^T = C^T*B^T*A^T (4) | |
property 3: x \in R^{nx1}, y \in R{nx1} => x^T*y = trace(x*y^T) (5) | |
now x=x, y=V*V^T*x => due (4), y^T = x^T*V*V^T | |
||x-V*V^T*x||^2 = ||x||^2 - 2*x^T*V*V^T*x + x^T*V*V^T*V*V^T*x | |
due to V^T*V=I: | |
||x-V*V^T*x||^2 = ||x||^2 - x^T*V*V^T*x | |
due to (5) where x=V^T*x, y=V^T*x: | |
||x-V*V^T*x||^2 = ||x||^2 - trace(V^T*x*x^T*V) | |
trace is a linear operator => | |
(2) <=> argmax_{V: V^T*V=I}{\sum_{i=1}^{m}{trace(V^T*\sum{x_i*x_i^T}*V)}} (2) | |
A = \sum{x_i*x_i^T} \in R^{n*n} - covariance matrix! | |
It's symmetric => can be rewritten in the following way: | |
A = VDV^T | |
Theorem: if A = \sum{x_i*x_i^T}, then the solution to (1) is the matrix V \in R^(nxk), whose columns are | |
k eigenvectors corresponding to k largest eigenvalues, and W=V^T \in R^{k*n}. | |
Proof: theorem 23.2 from "Understanding Machine Learning" by Shalev-Schwartz, Ben-David | |
So, to find V we need to find k largest eigenvalues and corresponding eigenvectors. | |
Complexity of the vanilla version: O(n^3) | |
How we'll do it? -> spectral decomposition of X^T@X | |
Another variant (if n>>m): get eigenvectors U of B=X@X^T, | |
then X^T@U/||X^T@U|| will be eigenvecotrs of A=X^T@X | |
Parameters | |
---------- | |
x: numpy array [m, n] | |
n_comps: int | |
number of principle components to extract | |
Returns | |
------- | |
v: numpy array [n_dims, n_comps] | |
orthonormal matrix whose columns correspond to k eigen vectors of X*X^T with largest eigenvalues | |
i.e. to compress some input x: x@v, | |
to decompress some values x_enc: x@[email protected] | |
""" | |
covariance_matrix = x.T@x | |
cov_eigen_values, cov_eigen_vectors = np.linalg.eig(covariance_matrix) | |
v = cov_eigen_vectors[:, 0:n_components] | |
return v | |
#DEMO | |
# Boston housing data | |
from sklearn.datasets import load_boston | |
from sklearn.decomposition import PCA | |
ds = load_boston() | |
x = ds['data'] | |
k = 2 | |
print("number of components: %d" % k) | |
pca_sk = PCA(n_components=k) | |
pca_sk.fit(x) | |
x_rec_sk = pca_sk.inverse_transform(pca_sk.transform(x)) | |
mse_sk = np.mean(np.sum(np.square(x-x_rec_sk), axis=1)) | |
print("MSE sklearn: %f" % mse_sk) | |
v = pca(x, k) | |
x_rec_ours = x@[email protected] | |
mse_ours = np.mean(np.sum(np.square(x-x_rec_ours), axis=1)) | |
print("MSE ours: %f" % mse_ours) | |
# Synthetic data, principal components visualization | |
import matplotlib.pyplot as plt | |
x = np.random.normal(size=[1000, 2]) | |
A = np.random.normal(size=[2, 2]) | |
print(A) | |
xA = x@A | |
#plt.scatter(x[:, 0], x[:, 1]) | |
plt.scatter(xA[:, 0], xA[:, 1]) | |
v = pca(xA, 2) | |
plt.scatter(xA[:, 0], xA[:, 1], label='data') | |
plt.plot([0, v[0,0]], [0, v[1,0]], c='blue', label='first principle component') | |
plt.plot([0, v[0,1]], [0, v[1,1]], c='red', label='second principle component') | |
plt.legend() | |
plt.xlim(-3, 3) | |
plt.ylim(-3, 3) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment