Skip to content

Instantly share code, notes, and snippets.

@sergiolucero
Last active June 14, 2018 17:09
Show Gist options
  • Save sergiolucero/24b9c7d0c5ab223ff2da16beb5712e7c to your computer and use it in GitHub Desktop.
Save sergiolucero/24b9c7d0c5ab223ff2da16beb5712e7c to your computer and use it in GitHub Desktop.
Training cars on Google colab
#from google.colab import files;uploaded = files.upload()
#!pip install TPOT
from tpot import TPOTRegressor
from sklearn.model_selection import train_test_split
df=pd.read_csv('32928_chile_autos.csv')
df=df[(df.Año>1980)&(df.Kilometraje>1000)&(df.Precio<100000000)&(df.Precio>1000000)]
data_columns = df.columns[2:-1] # add some more!
target_columns = df.columns[-1] # use logs!
X,y = df[data_columns], df[target_columns]
tt = train_test_split(X.values, y.values,train_size=0.75, test_size=0.25)
Xtrain,Xtest,ytrain,ytest=tt
tp = TPOTRegressor(generations, population_size, verbosity=verbosity,
scoring='negative_absolute_mean_error',
config_dict='TPOT MDR',
scoring='balanced_accuracy')
tp.fit(Xtrain, ytrain)
y_fit = tp.predict(X_test)
tp.export(os.path.join(MODEL_FOLDER, 'tpot_cars_pipeline.py'))
print(tp.score(Xtest, ytest))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment