Skip to content

Instantly share code, notes, and snippets.

@sergiolucero
Last active September 30, 2020 20:44
Show Gist options
  • Save sergiolucero/59ed64aa4caf5d897b7bbed24540fd64 to your computer and use it in GitHub Desktop.
Save sergiolucero/59ed64aa4caf5d897b7bbed24540fd64 to your computer and use it in GitHub Desktop.
first use of datachile API
import pandas as pd
import matplotlib.pyplot as plt
import squarify # pip install squarify (algorithm for treemap)
from datachile import ChileCube
client = ChileCube()
query = client.get("exports",
{"drilldowns": [
["Date", "Year"],
["Destination Country", "Country", "Country"]
],
"measures": ["FOB US"],
"cuts": [{"drilldown": ["Date", "Year"],"values": [2016]}],
"parents": True
})
###############################
df = pd.DataFrame(query['data'])
df = df[df['FOB US']>df['FOB US'].quantile(.85)] # remove smaller countries
df = df.sort_values('FOB US', ascending=False)
df['perc'] = df['FOB US']/df['FOB US'].sum()
df['cp'] = ['%s (%.2f%%)' %(c,100*p) for c,p in zip(df['Country'],df['perc'])]
squarify.plot(sizes=df['FOB US'], label=df['cp'], alpha=.8 )
plt.axis('off')
plt.title('Principales Exportaciones desde Chile año 2016')
plt.show()
@sergiolucero
Copy link
Author

sergiolucero commented Mar 9, 2018

My first example of using the datachile API. It's fugly for sure, but we're getting somewhere. Somehow surprised to see that bokeh, seaborn and dash do not provide treemaps as a standard feature.

@sergiolucero
Copy link
Author

image

@sergiolucero
Copy link
Author

image

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment