Last active
April 20, 2023 20:30
-
-
Save sethwololo/1a9e6a55334a4709e4e6a659d822923a to your computer and use it in GitHub Desktop.
whispercpp transcription using python bindings
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import ffmpeg | |
import numpy as np | |
import functools as f | |
from whispercpp import Whisper | |
from pathlib import Path | |
def convert_to_numpy_array(file_path: str | Path): | |
try: | |
out, _ = ( | |
ffmpeg.input(file_path, threads=0) | |
.output("-", format="s16le", acodec="pcm_s16le", ac=1, ar="16k") | |
.overwrite_output() | |
.run(capture_stdout=True, capture_stderr=True) | |
) | |
return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0 | |
except ffmpeg.Error as e: | |
raise RuntimeError(f"Failed to load audio: {e.stderr.decode}") | |
@f.lru_cache(maxsize=1) | |
def get_whisper() -> Whisper: | |
whisper_instance = Whisper.from_pretrained("base") | |
whisper_instance.params.with_language("pt") | |
return whisper_instance | |
def transcribe_audio(file_path: str | Path): | |
file_data = convert_to_numpy_array(file_path) | |
whisper = get_whisper() | |
return whisper.transcribe(file_data) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment