Last active
February 2, 2018 12:09
-
-
Save seungwonpark/e3e5ef0b7584d9a74c9b007ee122dda1 to your computer and use it in GitHub Desktop.
Drawing toroid with TikZ using perspective projection
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
\documentclass{standalone} | |
\usepackage{tikz} | |
\def\camtheta{60} | |
\def\camphi{70} | |
%\def\p{((3+cos(16*\t))*cos(\t))} | |
%\def\q{((3+cos(16*\t))*sin(\t))} | |
%\def\r{sin(16*\t)} | |
%\def\w{\p*sin(\camtheta)*cos(\camphi) + \q*sin(\camtheta)*sin(\camphi) + \r*cos(\camtheta)} | |
\def\rot{32} % # of toroid revolution. | |
\def\dist{20} % distance of camera and origin | |
\def\bigr{4} % radius of big circle | |
\def\smallr{0.5} % radius of small circle | |
\begin{document} | |
\begin{tikzpicture} | |
\draw[domain=0:360, smooth, samples=200, variable=\t] | |
plot ( | |
{((\bigr+\smallr*cos(\rot*\t))*cos(\t)*sin(\camphi) - (\bigr+\smallr*cos(\rot*\t))*sin(\t)*cos(\camphi)) / ((\bigr+\smallr*cos(\rot*\t))*cos(\t)*sin(\camtheta)*cos(\camphi) + (\bigr+\smallr*cos(\rot*\t))*sin(\t)*sin(\camtheta)*sin(\camphi) + sin(\rot*\t)*cos(\camtheta)-\dist)}, | |
{((\bigr+\smallr*cos(\rot*\t))*cos(\t)*cos(\camtheta)*cos(\camphi) + (\bigr+\smallr*cos(\rot*\t))*sin(\t)*cos(\camtheta)*sin(\camphi) - sin(\rot*\t)*sin(\camtheta)) / ((\bigr+\smallr*cos(\rot*\t))*cos(\t)*sin(\camtheta)*cos(\camphi) + (\bigr+\smallr*cos(\rot*\t))*sin(\t)*sin(\camtheta)*sin(\camphi) + sin(\rot*\t)*cos(\camtheta)-\dist)} | |
); | |
\end{tikzpicture} | |
\end{document} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment