- supports numpy array, scipy sparse matrix, pandas dataframe.
Estimator - learns from data: can be a classification, regression , clustering that extracts/filters useful features from raw data - implements set_params, fit(X,y), predict(T) , score (judge the quality of fit / predict), predict_proba (confidence level)
Transformer - transform (reduce dimensionality)/ inverse_transform, - clean (sklearn.preprocessing), reduce dimensions (sklearn.unsupervised _reduction), expand (sklearn.kernel_approximation) or generate feature representations (sklearn.feature_extraction).
properties: labels_, cluster_centers_. distance metrics - maximize distance between samples in different classes, and minimizes it within each class: Euclidean distance (l2), Manhattan distance (l1) - good for sparse features, cosine distance - invariant to global scalings, or any precomputed affinity matrix.
dbscan - deterministicly separate areas of high density from