Last active
December 9, 2018 17:22
-
-
Save sfujiwara/261e289ec7d70fbbb97307ccf25339db to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
import optuna | |
import sklearn.datasets | |
from sklearn.model_selection import train_test_split | |
def create_input_fn(): | |
iris = sklearn.datasets.load_iris() | |
x, y = iris.data, iris.target | |
x_train, x_eval, y_train, y_eval = train_test_split(x, y, test_size=0.5, random_state=42) | |
def _train_input_fn(): | |
dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train)) | |
dataset = dataset.shuffle(128).repeat().batch(16) | |
iterator = dataset.make_one_shot_iterator() | |
features, labels = iterator.get_next() | |
return {"x": features}, labels | |
def _eval_input_fn(): | |
dataset = tf.data.Dataset.from_tensor_slices((x_eval, y_eval)) | |
dataset = dataset.batch(16) | |
iterator = dataset.make_one_shot_iterator() | |
features, labels = iterator.get_next() | |
return {"x": features}, labels | |
return _train_input_fn, _eval_input_fn | |
def objective(trial): | |
train_input_fn, eval_input_fn = create_input_fn() | |
learning_rate = trial.suggest_loguniform("learning_rate", 1e-5, 1e-1) | |
clf = tf.estimator.DNNClassifier( | |
feature_columns=[tf.feature_column.numeric_column(key="x", shape=[4])], | |
n_classes=3, | |
hidden_units=[], | |
optimizer=tf.train.GradientDescentOptimizer(learning_rate=learning_rate) | |
) | |
clf.train(input_fn=train_input_fn, steps=100) | |
result = clf.evaluate(input_fn=eval_input_fn, steps=100) | |
accuracy = result["accuracy"] | |
return 1.0 - accuracy | |
if __name__ == "__main__": | |
study = optuna.create_study() | |
study.optimize(objective, n_trials=10) | |
print(study.best_trial) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment