Created
December 8, 2021 23:23
-
-
Save sgbaird/be004bd8405212ec74f62ebef4e65ded to your computer and use it in GitHub Desktop.
Create some dummy data and generate ordinal encodings and parameters/constraints according to the Ax (adaptive design) framework.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
"""Create some dummy data and generate ordinal encodings and parameters/constraints.""" | |
import numpy as np | |
import pandas as pd | |
# %% data and choices | |
data = [["A", "B", "C"], ["D", "C", "A"], ["C", "A", "B"], ["C", "B", "A"]] | |
choices = list(np.unique(np.array(data).flatten())) | |
n_choices = len(choices) | |
# %% ordinal encoding | |
df = pd.DataFrame(data) | |
choice_lookup = { | |
choice: choice_num for (choice, choice_num) in zip(choices, range(n_choices)) | |
} | |
encoded_df = df.replace(choice_lookup) | |
encoded_choices = pd.DataFrame(choices)[0].map(choice_lookup).values | |
encoded_data = encoded_df.values | |
print(encoded_data) | |
# %% parameters | |
nslots = 3 | |
slot_names = ["slot_" + str(i) for i in range(nslots)] | |
slots = [ | |
{ | |
"name": slot_name, | |
"type": "choice", | |
"values": encoded_choices, | |
} | |
for slot_name in slot_names | |
] | |
print(slots) # then format via black | |
# > [ | |
# > {"name": "slot_0", "type": "choice", "values": ["A", "B", "C", "D"]}, | |
# > {"name": "slot_1", "type": "choice", "values": ["A", "B", "C", "D"]}, | |
# > {"name": "slot_2", "type": "choice", "values": ["A", "B", "C", "D"]}, | |
# > ] | |
# %% constraints | |
constraints = [ | |
lhs + " <= " + rhs for (lhs, rhs) in list(zip(slot_names[:-1], slot_names[1:])) | |
] | |
print(constraints) | |
# > ["slot_0 >= slot_1", "slot_1 >= slot_2"] |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment